
An Updated Directory Structure for Unix

Michael Homer

michael@gobolinux.org

Hisham Muhammad

hisham@gobolinux.org

Jonas Karlsson

jonas@gobolinux.org

Abstract

While the standard Unix structure has survived for many years,

much of it rests on assumptions that are no longer true or necessary.

This paper will explore the historical reasoning that gave rise to the

current structure, and how greater functional organisation of the Unix

�lesystem layout may be achieved that is more in line with the re-

ality of contemporary computing. GoboLinux is a distribution using

an alternative �lesystem hierarchy intended to provide a more logical

layout for programs and data, and to make the structure of installed

applications explicit in the directory tree.

1 Introduction

While the standard Unix structure has survived for many years, much of it
rests on assumptions that are no longer true or necessary. This paper will
explore the historical reasoning that gave rise to the current structure, and
how greater functional organisation of the Unix �lesystem layout may be
achieved that is more line with the reality of contemporary computing.

GoboLinux is a distribution using an alternative �lesystem hierarchy in-
tended to provide a more logical layout for programs and data, and to make
the structure of installed applications explicit in the directory tree. This pa-
per presents the directory structure employed in GoboLinux, including the
rationale behind the changes and an assessment of the shortcomings it was
proposed to �x.

1



2 OVERVIEW 2

2 Overview

In GoboLinux, each program is installed into its own separate, versioned
directory, which also represents the package database. An automatically-
maintained tree of symbolic links keeps the program contents accessible with-
out overhead, while another set of �xed links maintains compatibility with
the original Unix tree. Programs may be installed using the distribution's
binary packages, its "Compile" tool and database of recipes, or manually,
each giving equal results.

2.1 History

Many of the decisions made in creating this layout are somewhat heretical,
and it bears to investigate the origins of the current structure and explain
why we feel it is acceptable and desirable to break with it.

The current standard hierarchy developed from one suited to the historical
needs of large Unix systems. The /usr hierarchy is distinguished from the
root so that it may be located on a separate physical disk or accessed over
the network from a workstation with limited storage. Only the basic tools
would be installed on the root partition, su�cient to boot and to repair the
system in single-user mode, and all other software would be installed on the
remote partition.

The single-user rescue mode is no longer a valid reason for the distinction:

When I need to rescue my system, I can use a fully-featured
live CD that runs a complete Linux distribution with a graphical
desktop, that allows me to browse the web and search for the
solution to my problem, and use all of the features of a regular
system to �x it.� [1]

There was a rationale behind having a bare-bones rescue mode at one point,
but there is a better solution available now.

Remote mounting remains a justi�cation for the split, though it is an in-
creasingly less common use case with modern desktop and server systems
having large disks capable of installing all of their software locally. It may
still be desirable to store software separately for administrative reasons, but
complicating the entire system for just one use case is not sensible. In any



2 OVERVIEW 3

case, the solution has been obsoleted from the other direction as well - what
if you have more than one application server? You can mount one on /usr,
and one on /opt, and for any more you have to create new non-standard
directories[1]. It is no longer worth catering to this scenario when it will be
necessary to break the standard regardless.

As with the live CD, a technical advance helps solve this problem for us as
well: union mounts allow us to overlay as many directories as necessary on
top of one another. These are very �exible and even allow localised overriding.
The GoboLinux /Programs tree is �the collection of all programs available
on the system�[1], and they could be drawn from many application servers
if necessary. It is possible even without an overlay �lesystem to move an
individual program or version of a program to an arbitrary location using
only a single symlink in the /Programs tree.

The distinction between bin and sbin is similarly obsolete and unnecessary.
Unix systems have a robust permissions system, and any command that
must only be run by the superuser can be chmod 700, when that is genuinely
necessary. A number of commands required to be placed in sbin have per-
fectly valid non-root uses, such as ifconfig. Both distinctions are historical
anomalies, and anachronisms today.

Of course, some of these reasons are stronger than others � they are being
laid out to show why we feel that it is acceptable to break with tradition.
Why it is desirable to do so is discussed in the next section.

GoboLinux in fact maintains full compatibility with this structure, possi-
bly to a greater degree than many distributions. There is a simple legacy
tree of symbolic links from the FHS directory to the GoboLinux equivalent,
so resolving /usr/bin/perl will still �nd the correct executable (as will
/bin/perl, or even /usr/X11R6/bin/perl). These links are kept hidden by
default using a small patch to the kernel VFS layer called GoboHide. The
patch is entirely optional and has only cosmetic function. Its only role is
to inhibit certain directory entries from appearing in a directory listing, ac-
cording to a list provided at runtime. These paths are still accessible, but
invisible in directory listings.

2.2 Layout

For this example of the layout we will use Bash 4.0 as our example program
when necessary. Any other program could be used in its place with exactly
the same treatment.



2 OVERVIEW 4

Bash will be installed in /Programs/Bash/4.0. The bash executable will
be at /Programs/Bash/4.0/bin/bash and any hypothetical libraries will
be in /Programs/Bash/4.0/lib/. If Bash 3.2 is installed as well, its �les
will be in /Programs/Bash/3.2. There is a tree of symbolic links pointing
to all of the executables, libraries, man pages, and headers in the system:
/System/Index/bin/bash points to the bash executable.

The goal of this layout is to make the structure of installed applications
explicit in the directory tree. All of the �les relating to Bash 4.0 are together
in one place, as are all of the �les relating to all installed versions of Bash.
The view into the system provided by the links tree is separate as it has
di�erent concerns and should not a�ect the physical layout.

The advantages of this kind of structure are recognised by the FHS itself
in the form of the /opt tree: it is reserved for �add-on application software
packages�[2, 12], which must be installed as either /opt/<package> � much
like the /Programs tree � or under /opt/<provider>, where <provider> is
a LANANA-registered provider name[2, 12-13] (LSB extends this to allow
an FQDN[3]). /usr/X11R6 is an FHS-mandated project-speci�c directory as
well. Given this recognition it is entirely reasonable to extend it to cover the
entire system, and historical inertia is all that holds us back.

2.2.1 Tree

As well as the /Programs tree, there are other directories in the system
for the symlinks and other required components. Previous versions of Gob-
oLinux have used the /System/Links structure below, while the next will
use the /System/Index tree. With /System/Index software is built against
the common pre�x and then installed into the /Programs tree, in order to
work better with some awkward software. The switch was motivated par-
ticularly by the increasing popularity of CMake, which has defaults that do
not allow overriding its automatically-detected paths, and other systems that
make strong assumptions about the �lesystem layout.

This table shows the correspondence of FHS directories to both trees. In
general, the FHS path will also be a hidden symlink to the GoboLinux loca-
tion.



3 ADVANTAGES AND IMPLICATIONS 5

FHS /System/Links /System/Index
/bin /System/Links/Executables /System/Index/bin
/lib /System/Links/Libraries /System/Index/lib
/sbin /System/Links/Executables /System/Index/sbin*
/etc /System/Settings
/usr / /System/Index
/usr/local /usr
/usr/X11R6 /usr
/mnt /Mount
/dev /System/Kernel/Devices
/sys /System/Kernel/Objects
/proc /System/Kernel/Status

* Note that bin and sbin remain merged; sbin is a symlink to bin.

The capitalised names were chosen to avoid possible con�icts with future
paths reserved by the kernel or other components (as happened with /sys).
They were not regarded as problematic to type because the shell can tab-
complete case-insensitively, and in any case typing the full paths should be
relatively rare [4][1]. Both the FHS and GoboLinux paths are available to
users and applications, so programs with �xed paths will continue to work.

3 Advantages and Implications

3.1 Manipulability

This set-up has three major implications: �rstly, that the origin of any �le
in the system can be found simply by reading the link to discover its loca-
tion. which mkpasswd will give /Programs/Whois/4.7.33/bin/mkpasswd,
revealing it to be a part of Whois and the version thereof. In fact, any pack-
age management operation can be performed using only the standard POSIX
tools.

Finding which programs are installed, or which versions of a program, can be
done using the ls command. Software can be removed using rm. Listing the
�les belonging to a program is simple with ls or find. It is not necessary or
even recommended to do most package manipulation tasks this way within
GoboLinux, and instead suggested to use the built-in tools SymlinkProgram,



3 ADVANTAGES AND IMPLICATIONS 6

RemoveProgram, or DisableProgram, but it is possible if desired or neces-
sary. Read operations are very suitable for the POSIX commands and this
is frequently convenient for �nding information at a glance.

3.2 Parallelism

Another implication is that multiple versions of a program may inherently be
maintained in parallel. Where the �les contained have distinct names they
may be fully active, as is the practical case for most libraries. Programs that
link against speci�c versioned sonames can continue to function, while those
that use generic names can use the current version. Where the �les do not
have distinct names � or at least some of them do not, as with many programs
providing executables � it is possible to switch between the versions with a
single command or to call the executable of another version by providing its
full path. This is something of an unsung feature that is frequently very con-
venient. Some distributions provide a version of this selection functionality
for a limited subset of programs like GCC, but here it is fully generic and
available for every program with no additional e�ort.

3.3 Unpackaged software

It is also possible to install programs that are not, or not yet, contained
within the distribution packaging system manually while still bene�tting from
all the advantages of the package management system. Unlike installing
into other systems this does not run the risk of interfering with the default
package manager or of creating �orphan� �les strewn across the system - the
program tree can easily be removed later in the usual fashion, avoiding the
complications of maintaining extra programs in /usr/local.

If the program were later to be included in the packaging system the upgrade
path would be clear and uncomplicated, with the existing installation being
a �rst-class citizen of the system. If it is never included, because it is site-
speci�c, proprietary, or licensing restrictions forbid distribution, the user can
still use the tools of the packaging system to manipulate it. It is not necessary
to consider that it is from outside the system except when installing, when
it requires no additional e�ort above building or extracting it manually.



3 ADVANTAGES AND IMPLICATIONS 7

3.4 In combination

Those three advantages between them make for a very powerful and �exible
system that is able to adjust to the needs of the user or local administrator,
rather than bending them to its.

This is also a boon for system repair. While a corrupted package database
or �les, or an accidentally-removed system component can be fatal in other
distributions it is usually fairly simple to repair here. Reverting to a previous
version is trivial, and it is possible to disable a program by removing links
to it to check whether it is really in use or not before deleting the package
entirely. Even severe problems like removing the running libc are repairable,
because the packaging system is manually manipulable. Experienced users
report that they have never encountered an issue that was not resolvable or
that required a reinstallation.

The slogan to go with the layout is �the �lesystem is the package manager�,
though that has sometimes led to misapprehensions. It is possible to do vir-
tually any task manually in the �lesystem, but still encouraged to use the
regular package-management tools included in the system wherever possible.
These tools perform the same �lesystem tasks automatically and sometimes
more cleverly. It would be more accurate to say that �the �lesystem is the
package management database�. The distribution provides both binary pack-
ages and �recipes� for building from source using the automated Compile tool,
both covering a wide range of software. In order to dispel (hopefully) some
of those misapprehensions preëmptively a brief overview of some of the tools
follows.

3.5 Tools

3.5.1 DisableProgram and RemoveProgram

DisableProgram removes the links to a given program, and RemoveProgram

both disables and deletes the program. Removing a program does not leave
broken links, and it is not necessary to curate them manually.

The ability to disable a program without removing it from the system is
another unsung feature of the structure. It is possible to test the removal
of software without actually deleting it, and to restore it immediately if its
removal was problematic. Disabled software can still be accessed using its
full path but will not be found by other software looking for it, which can



3 ADVANTAGES AND IMPLICATIONS 8

also be useful in some cases. Clearing out old software to reclaim disk space
can be done as a two-stage process, �rst disabling and only removing later
when it is clear that no problems arose.

3.5.2 SymlinkProgram

SymlinkProgram creates the links to a program, called automatically as part
of the installation process or used later on to reactivate a disabled program
or change the active version. It will not by default overwrite links from
a di�erent program, so which executables and libraries are in use does not
depend on which program was installed or upgraded most recently. Switching
between versions and reactivating disabled software are the most common
uses of this tool manually.

3.5.3 Compile

The Compile tool builds software from source using instructions from a
�recipe�. These are simple declarative �les describing the software. The
simplest possible recipe looks like this:

url=http://example.com/foo-1.3.tar.bz2

recipe_type=configure

All that is required in most cases is a declaration of where to �nd the source
code and what type of build system it uses. For autoconf-based systems
there is usually no more required information at all, while other build systems
sometimes require specifying which Make�le variable to override or similar
con�guration.

While it is possible to make much more complicated recipes including fur-
ther con�guration, customised build steps, or optional behaviours, the simple
basic structure has enabled the system to build up recipes for thousands of
distinct programs from a relatively small user base. Creating a new recipe
for software that isn't included is usually a simple task. As far as possible
the complicated work of path con�guration and sequencing is o�oaded to
the tool, which understands all of the commonly-encountered build systems.
In most cases there is no particular adaptation required to �t well-designed
software into the new directory structure: Compile will pass in the correct
paths for the program to its con�gure script automatically.



4 ALTERNATIVE APPROACHES 9

Dependencies are speci�ed in a separate �le, packaged up with the recipe,
listing out required programs and versions. These are checked against the
state of the /Programs tree itself, so software that has been added or removed
manually will be picked up correctly. To build the Foo program here, all
that would be necessary is Compile foo and the recipe would be fetched, its
dependencies checked and installed, and the software would be built.

3.5.4 InstallPackage

The distribution also provides binary packages built by the developers for
most software. It is not a source-based distribution, though the ease of
submitting and using recipes has attracted people who are interested in such
a system, and makes the recipe repository frequently advanced of the binary
package repository. InstallPackage bash will fetch and install the newest
Bash package from the repository without compiling.

3.5.5 DetachProgram and AttachProgram

These are less related to misapprehensions, but provide a unique feature of
the structure that was mentioned brie�y earlier. DetachProgram can take
an installed program, move it to another location, and create symlinks in
the /Programs tree to maintain its functionality. That allows distributing
programs over multiple partitions without using a union �lesystem, and seam-
lessly as far as the tools and user experience is concerned.

AttachProgram takes a disconnected program tree like that created by DetachProgram
and ties it into the /Programs tree to be linked. It could be used to connect
multiple systems to the same program on a network server, a more �exible
solution than using /usr and /opt as mountpoints for application servers
directly. Depending on the circumstances a union �lesystem may be supe-
rior, but having the option here is valuable. An interesting trait that may
be a plus or a minus is that when not on that network, the symlinks will not
resolve and the program silently drops out of the system.

4 Alternative approaches

There have been a few other attempts to deal with the same issues that are
at least super�cially similar. Most of these in fact have di�erent goals but
have arrived at a structure resembling GoboLinux in some ways.



5 OTHER FEATURES 10

One such system is Stow[5]. Stow is intended for use within a standard
FHS system, and maintains a separate tree /usr/local/stow containing
named package directories. It creates symlinks to the �les in those in in
/usr/local/{bin,lib,...}. It also uses the �lesystem structure as the
authoritative source of data on installed packages. Stow cannot maintain
multiple versions and can only be used for application software. Encap[6] is
similar to Stow, and both are patterned after the Depot[7] system developed
at CMU[8][9]. These are the most similar to GoboLinux of the approaches
described here.

NixOS[10] also installs programs in separate directories and supports multiple
parallel versions. Its goal is to be a system con�guration management system
and it uses cryptographic hashes in its paths to ensure consistency and atomic
operations. As such it is not possible to install software from outside the
packaging system or to manipulate packages manually. Instead it focuses on
building the entire system state from a type of functional expression, which
can be changed or rolled back to revert to a previous con�guration. It serves a
very di�erent purpose despite being super�cially comparable to GoboLinux.

Mac OS X combines a Unix core with the Mac OS GUI and structure familiar
to its users and incorporates both a Unix and Mac OS tree in its �lesystem,
hiding the Unix tree in most cases in a similar way to GoboHide[4]. Software
installation happens in the usual Mac OS fashion and the physical �lesystem
structure is mostly irrelevant. It is not possible (or at least advisable) to
manipulate it directly. The structure is similar in appearance but not in
functionality.

5 Other features

5.1 /System/Aliens

The Aliens system was developed to integrate third-party packaging systems
into the distribution's package management system [11]. These systems, such
as CPAN, LuaRocks, and RubyGems, have become increasingly common re-
cently. Within some communities they are the only obvious way of publishing
software, or even the only way at all. The Aliens system aims to embrace
rather than extinguish these systems.

Because of their popularity, users frequently do want to use these systems or
to use a library that is available through them. Historically it has been usual



5 OTHER FEATURES 11

to deprecate their use and advocate using the distribution's package manage-
ment system as the sole source of software, which requires the maintainers
to wrap all of the sometimes thousands of packages available in each system
into the local packaging format or have missing software. This is impractical
and so users have frequently installed the domain-speci�c system themselves
into either /usr/local or � worse � over the top of the distribution-managed
tree. The GoboLinux structure is able to support this better than most, but
it is still ungainly and error-prone. With parallel trees it is sometimes not
obvious which library will be loaded and there can be con�icts even when
the �les themselves do not overlap.

Many of these third-party systems in essence treat themselves as a single
program overall, including all of the software available through them. The
Aliens system acknowledges and accepts that behaviour, but keeps them
segregated from the main body of programs with more usual behaviour. It
also allows components of the systems to be used directly: a program in
the distribution packaging system is able to depend on a library available
through the alien system and have that dependency honoured.

In the Aliens system each of the third-party systems is given control of its
own directory tree under /System/Aliens and the relevant language or tool
is con�gured to use that location for libraries along with the default path.
The user can use the standard tool that comes with the alien system to
install libraries they want to use into that tree and they will be automati-
cally available across the system. A program within the distribution is also
able to depend on a part of an alien system: a dependency of the form
�LuaRocks:json >= 1.0� will cause the �json� LuaRock to be installed if it
is not already available. This means there is no overhead of repackaging or
of packages being out-of-date while the full array of software is available to
users.

In some ways this is a step back from the explicitly-structured tree that is at
GoboLinux's heart, but the bene�ts it provides in terms of software availabil-
ity and user satisfaction are worthwhile. The systems at hand do treat them-
selves as a single program and still have all of their �les located together, but
with the trees separated to make their unusual behaviour clear. Removing
the possibility of con�ict with user trees and embracing the domain-speci�c
knowledge that the maintainers of the alien systems have is an advantage
over the old arrangement.



6 CONCLUSION 12

5.2 Use �ags

Similar to those in Gentoo, these allow user input into build con�guration of
software built from source. They are fairly simple in comparison to Gentoo's
and designed to �t in with the rest of the GoboLinux philosophy. Inside a
recipe their use is principally declarative, though it can be more complicated
in the same way as other recipe functions when it is needed. Importantly,
they are for the most part used only when the option introduces a new
dependency for the program. The �ag can then be named after that program,
based on the name used within the tree.

This has an important implication: it is possible to enable �ags automatically
based on the installed software. These �automatic �ags� are turned on before
the con�guration �le is parsed, so they can be overridden later, but enable a
very �exible usage. In line with GoboLinux allowing software to be installed
manually within the package management system, the �ags remain out of
the way and do not require any extra bookkeeping until something unusual is
required. The presumption is that installing a program means that it should
be used and supported elsewhere, until that is contradicted. These �ags are
read from the /Programs tree directly and so include any manually-installed
software as well.

There are also �generic �ags� in the system. These �ags collect multiple other
�ags in a particular order and will enable their components when available.
The �gui� generic �ag, if enabled, will enable whichever GUI library �ag the
program in question supports. If more than one library is supported, it will
enable the one that is speci�ed as most preferred by the user in the generic
�ag.

Between these two features the Compile system is able to give the �sensible�
behaviour by default, without giving up any �exibility for the user. Auto-
matic �ags, in particular, help the system to conform to user expectations
in the common case. Binary packages are built using a set of default �ags
corresponding to the packages shipped on the CD. If the user does not change
the �ags themselves the system will behave in the same way it did before the
�ags existed.

6 Conclusion

GoboLinux uses a di�erent �lesystem hierarchy with the aim of making the
role of programs in the system explicit. The hierarchy places each program in



REFERENCES 13

its own directory and uses a tree of symbolic links to maintain compatibility
with the existing layout. It is designed to allow manual manipulation of
programs and to use the �lesystem as the live package management database,
allowing multiple versions of the same program to be installed at once as well
as the installation of unpackaged software into the system. While it breaks
with the existing structure, which has become outdated and overtaken by
developments, it remains fully backwards-compatible with it.

References

[1] Hisham H. Muhammad. I am not clueless -or- Myths and misconceptions
about the design of GoboLinux. http://gobolinux.org/index.php?

page=doc/articles/clueless.

[2] Rusty Russell, Daniel Quinlan, and Christopher Yeoh. Filesystem Hi-
erarchy Standard 2.3. Technical report, Filesystem Hierarchy Standard
Group, 2004.

[3] LANANA LSB Provider Name Registry. http://www.lanana.org/

lsbreg/providers/.

[4] Hisham Muhammad and André Detsch. An alternative for the UNIX
directory structure. In Proceedings of the III WSL - Workshop em Soft-

ware Livre, Porto Alegre, 2002.

[5] GNU Stow. http://www.gnu.org/software/stow/stow.html.

[6] Encap Package Management System. http://www.encap.org/.

[7] Wallace Collyer and Walter Wong. Depot: A tool for managing software
environments. In Usenix LISA VI Conference, 1992.

[8] Encap FAQ. http://www.encap.org/faq.html.

[9] GNU Stow manual. http://www.gnu.org/software/stow/manual.

html.

[10] About NixOS. http://nixos.org/nixos/.

[11] Michael Homer. Aliens: Integrating domain-speci�c package managers
into distribution package management systems. In Distro Summit at

linux.conf.au, 2010.


