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Abstract. In object-oriented systems, classes and objects often evolve into complex entities, and still, speci�-
cation of features is still done mostly in a method-by-method basis. This paper presents a novel technique for
object specialization. It consists of a series of language constructs which perform re�ective transformations in
compile-time. These are based on annotations added to method signatures called signals, through which sets
of methods from an object can be referred to collectively. This way, not only concerns that crosscut several
methods from an object can be �factored out�, but they can also be speci�ed in a generic way so they can be
mixed-in into objects of di�erent inheritance hierarchies.

1 Introduction

Object-oriented programming languages provide mechanisms to ensure application extensibility, allowing a program
to be adapted according to new requirements which might appear during the lifespan of a project. Such adaptations,
however, often imply in creating a new support layer to the language itself in order to adequate it to the needs
of a speci�c area. Examples of such scenarios are the implementation of object persistence for databases, mobility
for distributed systems or paralellism for high performance computing. In such cases, it may be more interesting
to extend the de�nition of a language, so that its applicability reaches beyond its original goals. Unfortunately,
extensibility of the languages themselves is an often neglected feature. �Feature-oriented� language extensions tend
to be ad hoc, increasing the complexity of the original language.

Extensiblity mechanisms for programming languages require access and manipulation of information regarding
the characteristics and/or the state of a program. This is typically accomplished through computational re�ection
([7]), by the establishment of a policy for manipulating not only data and code, but also their constitution and
behavior. Computational re�ection is a well known concept in the area of programming languages, and by allowing
the speci�cation of program operations in terms of the program itself, it makes a series of new idioms available to
the programmer. While the theoretical foundations of computational re�ection had already been established, how
to express those idioms, or, in other words, how to translate the power of re�ection (and, more generally, meta-
programming) into program constructs, remains an open subject. Only in the last decade techniques to explore
its expressiveness bene�ts were developed for applied �elds such as Software Engineering, mainly in the form of
Generative Programming ([5]) and related disciplines such as Template Meta-programming and Aspect-Oriented
Programming ([8]).

Approaches such as these hint us at one direction where re�ection appears as a tool for higher-level programming.
This work explores the possibilities of exploring another direction using similar re�ection-based techniques: object
specialization. Classes and objects often evolve into complex entities, and still, speci�cation of features is done
traditionally in a method-by-method basis. For example, when specializing a primitive List into a BufferedList,
a number of methods have to be changed in order to deal with the bu�er. In the traditional model, the process
of modi�cation of existing methods is done by reimplementing each one of them. At best, the reimplementation
includes a call to the original version of the method.

This paper presents a series of object specialization features based on behavioral re�ection. Through the proposed
model, methods and attributes can be grouped in categories, so that that use crosscutting concerns are speci�ed in
a less ad hoc, more declarative way. Those features are employed in a new re�ective prototype-based programming



language called Glass ([13]). Since they are additions to the traditional specialization model of OOP, they could
also be added as extensions to existing class-based or prototype-based languages1.

This paper is organized as follows: Section 2 presents a mechanism for crosscutting annotation, called signals,
to be used in the re�ective features for object specialization. The re�ective features themselves are discussed in
Section 3, along with examples of their use. Implementation issues are considered in Section 4. Section 5 discusses
related work on re�ection and aspectual decomposition. Finally, Section 6 concludes the paper.

2 Signals

Glass is an object oriented, prototype-based programming language with high-level constructs for compile time
structural and behavioral re�ection. It uses a type system inspired by ML-style signatures ([12]), which is beyond
the scope of this paper. For all purposes Glass can be regarded as a typical prototype-based language, not unlike
Self ([17]).

List is new Object as
store is Vector
add is method(o is Object) \
signals Increase as
...

end
removeFirst is method() signals Decrease as
...

end
removeLast is method() signals Decrease as
...

end
copyFrom is method(l is List) \
signals Increase, Decrease as
...

end
end

Stack is new Object as
top is Object
push is method(o is Object) \
signals Increase as
...

end
pop is method()(Object) signals Decrease as
...

end
peek is method()(Object) as
...

end
clear is method() signals Decrease as
...

end
end

Fig. 1. Two objects, List and Stack, featuring user-de�ned signals, Increase and Decrease.

Besides usual primitive entities such as objects, handles and methods, Glass features an additional entity, called
signal. Signals are annotations added to the signature of methods, as depicted in Figure 1. In this �gure, signals
Increase and Decrease de�ne sets of methods on objects List and Stack. These signals act as a annotation for
further re�ective transformations: they are declared so that the code insertion features presented in Section 3 do
not need to refer explicitly to method names, but only to signal names, as they represent the set of methods that
declare them.

Notice that the scope of re�ective transformations are restricted to the object they are applied to. A transfor-
mation can, thus, be applied explicitly to either List.Increase or Stack.Increase. In Glass, re�ective transfor-
mations are always applied to methods of a speci�c object, either using the object.signal notation, or enclosing
the transformation within the object declaration block itself. Still, generic transformations can be declared as a
combination of re�ective declarations using only a signal name without an object name � the language construct
for this will be presented in Section 3. A generic transformation declared in terms of the signal Increase could
then be applied to both List and Stack. This way, code can be shared between methods from objects of di�erent
inheritance hierarchies in a more �exible way than using multiple inheritance.

Signals are meant to be associated to methods where it is known in compile time that a given condition may be
triggered in run time. For example, the chosen semantics for Increase and Decrease in the example was to specify
that the signaled methods may increase or decrease the number of elements in the data structure. The code for
controlling the �list empty� �ag could be implemented only once, and inserted in all methods using the Decrease

signal.
Operations can be speci�ed by an object not only in terms of signals of the prototype objects it inherits from,

but also in terms of signals of the attributes that consitute the object itself. This way, a set of methods where a
given attribute triggers a signal (or, more precisely, where methods of a given attribute that happen to declare a

1
Glass is prototype-based, so the article will refer mainly to object specialization instead of class specialization. Since these
models are equivalent ([17]), the terms are interchangeable.



speci�ed signal are called) can be referred through a signal. For example, it is unnecessary to declare a signal in the
signature of every method that accesses a database; instead, the SQL library methods can declare signals, through
which methods performing database access can be identi�ed.

Object signals become visible only if explicitly exported (through an export clause). This restriction assures
that an object controls how much of its internal state can be a�ected by the manipulation of signals in derived
objects or in objects that use it as attribute.

Besides signals declared in method signatures, signals related to the behavior of the handles themselves can
be referred to. Every handle has read and write signals, associated to handle access and assignment. These can
be understood as signals declared in get() and set() methods in the rei�ed view of the handle metaobject.
Therefore x.read does not refer to �all methods of the object pointed by the handle x which feature signal read in
its signature�, but �all places where the x handle is read�.

It is worth noticing that pointcut speci�cation through signals is a diametrically opposite approach to that taken
in AOP, where there is a clear separation between component and aspect code. In AOP, method names are grouped
together within the aspect, along with re�ective transformations; in our approach a signal also corresponds to a
set of members, but the association between methods and signals is done by the method itself. The goals of each
methodology are di�erent and, in our point of view, complementary.

3 Re�ective declarations

Glass supports two primary types of operations for behavioral intercession: intramethod and extramethod

modi�cation. To each of them, a speci�c language construct is built. Those are features for compile-time re�ection,
implemented as high-level macro mechanism. A third construct encapsulates re�ective constructs, in order to provide
generic reuse. Each of these constructs is presented below.

3.1 Intramethod Modi�cation: �when�

Intramethod modi�cation consists in inserting code inside a method body, based on the signals exported by method
calls found inside it. If the code of these methods is instrumented with exported signals, one can de�ne a rule such
as �insert the given code block in every method before occurrences of calls that produce the signal s�. Intramethod
modi�cation is declared using the when construct, which receives a signal as a parameter and builds before and/or
after blocks which are to be applied on methods where calls that produce the speci�ed signal occur.

BufferHandler is new Object as
buffer is new List
doSomething is method() signals Update as
...
buffer.add(i)

...
buffer.copyFrom(anotherList)

...
end
flushToDisk() is method() as
...

end
when buffer.increase
before
if buffer.size > limit then flushToDisk()

end
end

Application is new Object as
foo is new method() signals State as
...
BufferHandler.doSomething()

...
end
bar is new method() signals State as
...

end
redefine where BufferHandler.Update as
after: updateScreen()

end
redefine where State as
before: storeState()
after: compareState()

end
end

(a) (b)

Fig. 2. Transformations with the when (a) and redefine (b) declarations.

Figure 2(a) shows an example of intramethod modi�cation using the when construct. In this example, object
BufferHandler wants to use List as a bu�er and �ush it every time its size reaches a certain limit. BufferHandler
creates a copy2 of List and assigns it to handle buffer. The when declaration at the bottom adds an if statement

2 The new keyword indicates a creation of a copy of a prototype object into a new one. Modi�cations in the copied object
may be speci�ed in a as/end block.



performing the �ush check right before each call of methods from buffer which signal Increase, inside every
method of BufferHandler. For illustration purposes, a simplistic example is shown, where the code insertion is
equivalent to adding the portrayed block in the preceding line of each matching method call. Less trivial code
insertion can occur, as in the following example. Suppose that List features a method checkInsert that returns a
value and also signals Increase. Some method from object BufferHandler, then, contains the following statement:

if a(b(), buffer.checkInsert(c()))
According to the semantics of Glass, the �ush check is added before the evaluation of the target method's

parameters, in this example, between the calls of b() and c(). The order of evaluation is the following. First, b()
gets called. Then, the inlined �ush check, followed by c(), and �nally, by buffer.checkInsert(). The method call
is �wrapped around�. Implementation strategies are discussed in Section 4.

In spite of apparently breaking with the atomic view of methods existing in behavioral re�ection, intramethod
modi�cation must not be confounded with linguistic re�ection. Instrumentation inside a method body is limited
to entry and exit points of method calls. It may also seem to be a breach on encapsulation because method
transformations are performed based on their contents. This is not the case, because these transformations are to
be understood as extensions of the method calls they wrap.

The use of when is also di�erent than simply specializing an object, adding code and a call to the parent
method, for two reasons. First, the scope of the modi�cation is limited to an object, so the method from an object
can be specialized di�erently on di�erent contexts. Second, many methods can be specialized at once, avoiding code
duplication.

3.2 Extramethod Modi�cation: �rede�ne�

Extramethod modi�cation consists of de�ning rules for the replacement or instrumentation of a method by sur-
rounding its code with additional calls, using signals as a criterion, in an equivalent way to before- and after-

methods from CLOS. This is done through the redefine declaration.
There are two forms of using the redefine block construct: through the speci�cation of an object and a signal,

as in redefine where o.s, or by a signal only, as in redefine where s. In the �rst case, the before and/or after
blocks will be prepended/appended to all methods containing a call to a method of object o which features the
signal s in its signature. In the latter case, the a�ected methods will be those containing s in their signature.

The example from Figure 2(b) demonstrates the two forms of the redefine declaration. An Application object
features a number of methods (foo, bar, etc.). Two redefine declarations modify the methods of Application.
The �rst one appends a method call (updateScreen()) to every method from Application that contains calls to
methods from BufferHandler that signal Update (in this example, foo will be modi�ed because it contains a call to
BufferHandler.doSomething()). The second one surrounds every method from Application that signals State
(foo and bar) with a pair of blocks.

It is worth to point out that the examples given above show that when and redefine are used not only to
specialize inherited methods from a parent object, but also to isolate coincidental parts of the methods being
de�ned on the object itself. Through when and redefine, aspectual decomposition can performed within an object.

3.3 Composition of declarations

A third construct, declaration, serves for combining declarations. It can be considered a high-level macro processing
construct, with roots in Lisp's defmacro. A declaration block is a top-level program construct, and so it is not
contained within an object block. A declaration is speci�ed by a signature, containing its name and a series of
parameters. Object and method declarations, as well as when and redefine declarations, can then be listed inside
it. A declaration can be applied in an object block de�nition as if it was an extension of the language syntax.

Method sets represented by signals which are a�ected by re�ective transformations can be speci�ed independently
from the inheritance and subtyping trees. Once a re�ective transformation is declared for signal S, it can be used
on any object where methods signalling S exist. Furthermore, in a declaration, handles can be rei�ed as handle
objects and signals as signal objects, in order to allow them to be used as parameters as well as parameterization
of re�ective commands enclosed within the declaration block.

The following example demonstrates the addition of a new declaration, synchronize, which, on its turn, makes
use of the redefine declaration.

synchronize is declaration (A is handle, S is signal) as
synchronizeMutex is new Mutex



redefine where A.S as
before : synchronizeMutex.lock()
after : synchronizeMutex.unlock()

end
end
The synchronize declaration adds an attribute of type Mutex, and surrounds all methods that write to a speci�ed

handle with a lock. For example, A version of Stack with mutually exclusive access is produced by specializing it,
applying the synchronize declaration:

Pool in new Stack as
synchronize top write

end
This example demonstrates how generality can be achieved by using handle and signal names as parameters of

a declaration.

3.4 Exporting signals

A possible limitation on signal-based code maintainability lies in how to control the (possibly far-reaching) impact
of modi�cations produced by re�ective commands such as when and redefine on methods declared on parent
objects. The question is aggravated by the computation model based on �side e�ects�, an inherent characteristic of
the imperative paradigm. The addition of code to a method causes new side e�ects and modi�es previously existing
ones. The state of internal variables of a method cannot be accessed, nor modi�ed, but the state of an object or
attribute which it depends on may be. The association of pre- and post-conditions to the exportation of a signal
can be a powerful tool in order to guarantee a method's consistency.

The use of pre- and post-conditions can ensure the maintenance of the object contract even with the use of
intrusive operations such as the ones presented above. This way, the speci�cation of properties of an object will not
be invalidated by specialization of its methods in a derived object. Further, in Glass, while structural intercession
features (not discussed in this paper) such as method assignment have a run-time nature, behavioral intercession
is restricted to compile-time, and therefore re�ective transformations are always performed relative to the object's
initial structural state.

4 Implementation

The forms of code manipulation discussed in the previous Section are performed on the abstract syntax tree
level, generated once the program source is parsed. In the prototype implementation, the AST is a collection
of nodes that correspond to the rules of the language syntax grammar, with auxiliary nodes that served purely
syntactical purposes, such as <End>, removed. Once the AST is in memory, the next step is to process the re�ective
commands, which generate the new structures that represent the modi�ed code. What we have here is clearly the
application of transformations on a tree. A clear, concise way to represent these transformations is through tree-

transformational grammars, or TTGs ([14]). A TTG is a context-free grammar where each production features
a term on its leftpart, and one or two rightparts, one indicated with a single arrow which represents the sub-tree to
be recognized, and another indicated with a double arrow representing the sub-tree to be inserted in place of the one
that was recognized. Each re�ective command, then, corresponds to a pattern of applications of transformational
grammars to be followed.

The speci�cation of the semantics of the re�ective commands of Glass was made using transformational

attribute grammars, or TAGs ([14]). As its name implies, TAG combines a tree transformational grammar
to an attribute grammar ([10]). In attribute grammars, nonterminal symbols of the grammar have associated to
them attributes, which can be inherited or synthesized. Computations are then speci�ed declaratively on these data
structures described by the attributes. Inherited attributes can be seen as data computed top-down, and synthesized
attributes as data computed bottom-up ([4]).

Code instrumentation performed by the when command can be seen clearly as a top-down traversal of the abstract
syntax tree corresponding to each method of an object. Translation of this traversal to a TAG is straightforward.
The four elements given in the construct's syntax�identi�er, signal, before-block and after-block�are entered as
attributes to the transformational rule. The redefine command corresponds to a bottom-up traversal of each
method, synthesizing an attribute indicating whether the method matches the transformation pattern or not. Code
insertion is then performed top-down, similarly to when.



5 Related work

The abstraction power of a language can be largely increased by making the metaclasss hierarchy explicit; however,
the simplistic availability of this hierarchy gives little bene�t to the development of application software. As tech-
niques for implementation of computational re�ection mature, a number of research groups have been dedicated to
studying strategies for the e�cient exploration of it in a software engineering context.

Aspect-Oriented Programming is gaining increasing acceptance as a design methodology. The most proeminent
language that implements AOP is AspectJ ([9]), an extension of Java. The fundamental principle of AOP is
based on the fact that certain characteristics are spread over classes that are not related through the inheritance
hierarchy. Aspects are constructs that can refer to methods of di�erent classes, instrumenting them with additional
features. This pervasive capacity of aspects, however, can be considered a breach in the encapsulation of classes
([11]). De�nition of pointcuts inside the aspect is an explicit reference to the class structure. A complex aspect will
feature a series of pointcuts with references to several methods; changes in classes will imply in a revision of the
aspects.

We've seen that the use of signals declared in method signatures avoids the problem of synchronizing the base
code and the re�ective code, abstracting away knowledge about the internal constitution of the target object. For this
reason, the use of signals as crosscutting annotation for aspects could present a maintenance gain. Parametrization
of re�ective code as occurs in the declaration construct is also a step to bring aspect-orientation and generic
programming closer to each other, as an attempt to improve reusability of code-insertion rules.

The approach taken in signal-based object specialization presented in this work is di�erent from AOP in two
ways. First, there is no separation between component language and aspect language. Second, our intent is not
to address system-wide crosscutting concerns, but to crosscut methods within objects. Because of these di�erence
of goals, we believe that both techniques can be used together, and through uni�ed pointcut speci�cation, could
bene�t from each other.

Generative programming ([5]) emerged as another programming discipline for higher level development, based
on template meta-programming. It explores the code composition facilities provided by C++ templates ([15]) to
build complex objects based on compile time layering. By providing generic facilities for declaration of re�ective
transformations, signal-based object specialization can be used as a tool for generative programming. Default
behavior can be coded into an object and a selected group of transformations can con�gure a derived object, which
then serves as a generator prototype. This serves the purposes of code composition expected by the generative model,
and avoids the need for a Turing-complete template meta-programming such as the one (accidentally) provided by
C++.

OpenC++ ([3]) is a C++ preprocessor that extends C++ by adding compile time re�ection to the language.
Its implementation can be considered a high level macro processor. OpenC++ adopts a lower-level approach. It
allows for arbitrary syntax extensions, through explicit manipulation of abstract syntax tree nodes or insertion of
strings of code. This brings greater �exibility at the expense of postponing syntax veri�cation to the �nal pass of
compilation, when the generated C++ is compiled.

The Explicit Programming methodology shares much in intent with the approach taken in our work. In [2],
Bryant et al. present this programming model and a tool called ELIDE which provides Java extensions for Explicit
Programming. Our work has many similarities with Explicit Programming in that it allows the user to add vocabu-
lary to distinguish parts of the code that share common design concepts, and, more importantly, this vocabulary is
added where the concept occurs in the code. It could be said that the re�ective features of Glass allow for Explicit
Programming. There are, however, many di�erences from the design adopted in ELIDE. In Glass, the added an-
notation does not correspond to a speci�c transformation, instead transformations are speci�ed later on, in terms
of this annotation (signals). Signals are relative to the inheritance hierarchy, and can be reused in derived objects.
This way, they can be used for di�erent kinds of transformations, depending on how the objects are used. Also, in
Glass, a limited number of high-level idioms for transformations is provided, while Elide allows manipulation of
Java code as strings, like OpenC++.

6 Conclusion

In recent years, focus on research in computation re�ection has directed towards the development of ways to increase
its applicability, now that its theoretical foundations is already well understood. This work proposed a model where



behavioral re�ection is used to perform code composition using language constructs to specify modi�cation of
methods and a high-level linguistic feature called signaling is used to indicate points of instrumentation. Through
signals, sets of points where a given code modi�cation should be applied are indicated, without interfering with
the basic principles of encapsulation de�ned by the object-oriented paradigm. It is important to note that all those
techniques are based in compile-time re�ection.

Numerous possibilities are open for future work, ranging from further development of the prototype compiler and
its adaptation to generic backends to the formalization of concepts presented in this paper, such as the completion
of the tree-transformational attribute grammars that specify the semantics of when and redefine (presented in
[13]) into a full translation grammar.

The availability of crosscutting annotation embedded in the program language also makes it a good candidate
for integration with an aspect language. The approach currently under consideration consists of adding a form of
declaration that is able to apply transformations to methods from a set of objects at once. Adding signals to
new object declarations is being considered as a way to specify this set of objects, but these are still open issues.

A possibility that was not fully explored in this work is the full rei�cation of handles. Reifying a handle, one can
see the pointer itself as an object. The pointer's behavior could then be speci�ed in order to con�gure the manage-
ment of objects and methods of a program. Examples of such behaviors would be smart pointers, communication
with garbage collectors or even handles that act as low-level pointers to memory areas or communication ports.

As new constructs are added to a language, new design possibilities arise. An interesting area of research would be
to investigate how these constructs would a�ect the implementation of existing design patterns, possibly simplifying
or generalizing them, and what new design patterns could be thought of, exporing the declaration construct as a
form to develop reusable patterns of object specialization.
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