
A study on scripting language APIs

Hisham H. Muhammad

Advisor: Roberto Ierusalimschy

Pontifícia Universidade Católica do Rio de Janeiro

Centro Técnico Cientí�co

Departamento de Informática

November 9, 2006

1

Abstract

Applications written in two programming languages, in order to optimize parts where
performance is critical or to obtain extensibility through user-written scripts, are common-
place nowadays. There are several ways to obtain this kind of interoperability; ideally,
however, a language should provide a foreign language interface (FLI), allowing program-
mers to send and receive both data and function calls to code written in another language.

This work discusses the main issues involving the design of APIs for integration of
language environments within C applications. We present the main problems faced in the
interaction between code executed in an environment with inherently dynamic character-
istics such as a scripting language and C code. We compare approaches employed by �ve
languages when handling communication between the data spaces of C and embedded run-
time environments and the consequences of these approaches in memory management, as
well as sharing of code between the C application and that from the scripting language.

We illustrate the di�erences of the APIs of those languages and their impact in the
resulting code of a C application through a case study. Di�erent scripting languages were
embedded as plugins for a library, which on its turn exposes to client applications a generic
scripting API. This way, the code of each plugin allows us to observe in a clear and isolated
way the procedures adopted by each language for function calls, registration of C functions
and conversion of data between the environments.

2

Contents

1 Introduction 5

1.1 Objectives . 6
1.2 Text structure . 6

2 Interaction between programming languages 9

2.1 Code translation . 9
2.2 Sharing virtual machines . 10
2.3 Language-independent object models . 11
2.4 C as an intermediate language . 12
2.5 Interfaces to C . 12
2.6 Scripting languages . 14

3 Scripting language APIs 17

3.1 Data transfer . 17
3.1.1 Python . 19
3.1.2 Ruby . 23
3.1.3 Java . 27
3.1.4 Lua . 30
3.1.5 Perl . 32
3.1.6 Comparison . 35

3.2 Garbage collection . 36
3.2.1 Python . 37
3.2.2 Ruby . 40
3.2.3 Java . 41
3.2.4 Lua . 43
3.2.5 Perl . 45
3.2.6 Comparison . 45

3.3 Calling functions from C . 46
3.3.1 Python . 47
3.3.2 Ruby . 48
3.3.3 Java . 50
3.3.4 Lua . 52
3.3.5 Perl . 53

3

4 CONTENTS

3.3.6 Comparison . 54
3.4 Registering C functions . 55

3.4.1 Python . 55
3.4.2 Ruby . 57
3.4.3 Java . 58
3.4.4 Lua . 60
3.4.5 Perl . 61
3.4.6 Comparison . 63

4 Case study: LibScript 65

4.1 LibScript . 65
4.1.1 Architecture of LibScript . 65
4.1.2 Main library API . 69
4.1.3 Plugins API . 72

4.2 Implementation of plugins . 73
4.2.1 Representation of states . 74
4.2.2 Termination of states . 76
4.2.3 Passing arguments . 77
4.2.4 Function calls . 85
4.2.5 Capturing errors . 87

4.3 Conclusions . 88

5 Conclusions 91

A The LibScript API 99

A.1 Startup and termination . 99
A.2 Function registration . 99
A.3 Arguments bu�er . 99
A.4 Running code . 100
A.5 API exported by plugins . 101

Chapter 1

Introduction

There are many situations in which it is necessary or interesting to have interaction
between programs written in di�erent languages. A typical case is the use of external
libraries, such as graphic toolkits, APIs for database access, or even operating system
calls. Another scenario involves applications developed using more than one programming
language, in order to optimize parts where performance is critical or to allow extensibility
through scripts written by end-users.

Regardless of purpose, communication between programs written in di�erent languages
brings up a number of design issues, not only in the development of the applications, but
of the languages themselves. There are many ways to obtain this kind of interoperability,
from translation of code of a language to another to the use of a common virtual machine.
Ideally, however, a language should provide a foreign language interface (FLI) that allows
programmers to send and receive both calls and data to another language [11]. Among
the factors that should be taken into account when developing such an interface are the
di�erences between type systems, memory management issues (such as garbage collection
and direct access to pointers) and concurrency models. Beyond dealing with semantic
di�erences, the design of an interface between languages involves pragmatic issues such as
the balance between safe isolation of the runtime environments, performance and simplicity
of the resulting API.

We can observe in existing implementations of FLIs a number of approaches to these
problems. Indeed, FLIs for di�erent languages (or even di�erent revisions of a single
language) tend to be very di�erent from each other. Still, it is possible to trace parallels
among the various techniques employed, since the fundamental problems that they address
are the same.

Because of the popularity of the C language and the support it enjoys in most popular
operating systems, a considerable number of implementations of foreign language interfaces
are, in practice, C APIs. Besides, an interaction model for programming languages that has
become especially relevant nowadays is that between statically typed compiled languages,
such as C, and dynamically typed interpreted languages, as proposed by Ousterhout [32].
These two classes of languages have fundamentally di�erent goals. Statically typed lan-
guages are usually implemented with high performance in mind and focus on lower-level

5

6 CHAPTER 1. INTRODUCTION

programming. In contrast, scripting languages tend to be implemented as interpreters or
virtual machines, and make extensive use of high-level constructs, such as lists and hashes,
as basic types. These complementary features have made the two-language programming
model popular, in which a lower-level language is used for development of components,
which are then connected through a higher-level language.

1.1 Objectives

This work discusses the main issues involving the design of APIs for integration of run-
time environments of scripting languages in C applications. We present the main problems
faced in the interaction between code executed in an environment with inherently dynamic
characteristics such as that from a scripting language with C code. Besides being currently
the most popular class of languages for multi-language development, typical features of
scripting languages such as garbage collection and dynamic typing illustrate well the prob-
lems that arise in the communication between di�erent programming environment, since
these features are absent in C. Languages with static typing may present similar needs
for type conversion, but this problem tends to be simpli�ed by the de�nition of equivalent
types in the API and compile-time inference (as can be observed in C APIs for Ada and
Fortran). Functional languages have additional concerns related to side e�ects in C code,
but this is equivalent to the paradigm break problem caused by handling of I/O commonly
faced by those languages.

This study consists of two parts. In the �rst part, we performed an in-depth analysis
of a set of C APIs provided by four scripting languages � namely, Python [45], Perl [47],
Ruby [40], Lua [15] � as well as the API provided by the Java language [13]. Unlike the
others, Java uses static typing, but like them it is based on a virtual machine model,
features automatic memory management and allows dynamic loading of code. This allows
us to observe how typing a�ects the design of the API.

In the second part, we illustrate the di�erences between the APIs of those languages
and the impact of those in the resulting code of a C application through a case study.
We performed a comparison between scripting language APIs through a concrete example,
in order to present implementations in each of the studied languages side by side. The
example consists of a generic scripting library, called LibScript, and a series of plugins
that interface to the di�erent languages. This way, the code of each plugin allows us to
observe in a clear and isolated way the procedures used in each language for function calls,
registration of C functions and data conversion between environments.

1.2 Text structure

This work is structured as follows. In Chapter 2, we discuss the various approaches for
interaction between code written in di�erent programming languages. Starting from an
overview, the focus will then concentrate on the most commonly used foreign language in-

1.2. TEXT STRUCTURE 7

terface: interfaces with the C language. We will discuss the problems commonly presented
in the communication with C code and the programming models that appeared with its
popularization in the integration with scripting languages. In Chapter 3, we present in de-
tail C APIs for a set of scripting languages. When discussing these interfaces, the di�erent
solutions employed for the main problems involving interaction between C and dynamic
environments are brought up. Chapter 4 exercises these APIs through a case study: a
plugin-based library that o�ers a simpli�ed, uniform interface for scripting languages. By
examining the implementation of each plugin, we can compare the APIs for each language
performing equivalent operations. Finally, in Chapter 5, conclusions reached through this
work are presented, as well as possible directions for future work.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Interaction between programming

languages

The approaches applied to the interaction of di�erent programming languages vary
considerably, but it is possible to identify some of the more typical techniques: language
translation, from one language to the other or of both to a third; communication through
an intermediate protocol or language; sharing a common execution environment, be it a
virtual machine or through call conventions; and foreign language interfaces.

2.1 Code translation

Allowing the use of two languages in a program through the translation of the code
of one of them to the other minimizes the problem of communication between the parts
of program written in di�erent languages, since the �nal program will use a single data
space. On the other hand, by having to describe a language in terms of the other, the
semantic di�erences of their constructs may become a problem. If the target language
lacks constructs o�ered by the source language, simulating them may be costly.

A typical example of this problem is the complexity added by the simulation of higher-
order functions and tail recursion when translating code from functional languages to
one that does not have those features. Tarditi et al. [39] describe the development of
a translator of Standard ML to ANSI C. Their measurements have exposed the cost of
adapting the features of ML to C, resulting in code that is in average 2 times slower than
the that generated by the native ML compiler. In [42], similar challenges are discussed in
the translation of ML to Ada: in the adopted approach, the process has an intermediate
step where higher-order constructs are ��attened� to �rst-order constructs using records,
so that they could be represented in Ada.

Besides problems such as this, di�erences in the representation of data is also something
to be handled when translating one language to another. In the particular case of C, its
lower-level facilities for memory manipulation allow the description of data structures for
higher-level languages without too much trouble. This makes C a frequent candidate for

9

10 CHAPTER 2. INTERACTION BETWEEN PROGRAMMING LANGUAGES

use as a portable low-level representation of code. The Glasgow Haskell Compiler o�ers, as
an alternative to the generation of native code, generation of C code for use with GCC [19].
One of the advantages of this feature is to allow the bootstrapping of the compiler in new
architecture, given that GHC itself is written in Haskell. In fact, the ubiquity of C compilers
has prompted the use of this language as a lingua franca between di�erent languages, as
we will see in Section 2.4.

2.2 Sharing virtual machines

Another approach for the interaction between languages involves the use of a common
execution environment, such as a virtual machine. The code of di�erent languages is
compiled to produce compatible representations, according to the data types provided
by the execution environment. Many implementations use the Java Virtual Machine [22]
for this end. Jython [14] is an implementation of the Python language that produces Java
bytecodes. SMLj [2] is a Standard ML compiler that generates Java bytecodes and provides
access to Java classes and methods to ML structures and vice versa. The fact that the Java
Virtual Machine was not designed to support di�erent programming languages, however,
shows in the limitations presented by these projects. SMLj de�nes extensions to the ML
language to allow access to constructs that are speci�c to Java; Jython poses limitations to
the interface between Python and the Java APIs for re�ection and dynamic class loading.
Besides, the instruction set of the virtual machine focuses on operations that match Java's
semantics, which makes, for example, the implementation of arrays with di�erent semantics
less e�cient.

The .NET Framework [3] is a runtime environment based on virtual machine that is
being presented by Microsoft as their programming platform of choice in Windows system.
Although the C# language [17] has been introduced speci�cally for it, this environment
has as one of its goals multi-language support � evidenced by the very name of its Common
Language Runtime (CLR) � contrasting with the limitations imposed by the Java environ-
ment to those who try to use it with other languages. However, adaptations to languages
remain necessary in the .NET environment: the .NET version of Visual Basic includes
changes to the language to make its semantics match those from C#; a new dialect of
C++, C++/CLI, was introduced adapting its memory management model to that of the
CLR [9]; similarly, a new dialect of ML called F# was developed to, among other reasons,
provide better integration with .NET components written in other languages [38].

Another implementation of a virtual machine for multiple languages is being pursued
by the Parrot project [34]. The scope of this project is narrower, aiming to serve as a
common back-end for dynamic languages such as Perl and Python. The focus of the
project, however, is currently on the implementation of Perl 6.

A kind of communication that can also be considered the use of a common runtime
environment is the communication between executables and native libraries through call
conventions: rules for passing parameters in the runtime stack, use of registers and name
mangling. This can be considered the lowest-level method method for interaction between

2.3. LANGUAGE-INDEPENDENT OBJECT MODELS 11

code in di�erent languages. Calling conventions, however, are a limited form of communi-
cation, as they assume data types with identical memory representation in both languages.
Such compatibility is hardly the case, unless one of the languages explicitly considers this
kind of interaction in its de�nition: the Ada standard, for example, requires its imple-
mentations to be compatible with the calling conventions of C, COBOL and Fortran [16].
Likewise, C++ allows to specify functions with C-compatible linkage, through the extern
"C" directive.

2.3 Language-independent object models

Adopting a language-independent type model is another way to handle the issues of
data interoperability between languages. This way, in the de�nition of the data for an
application, their interfaces are described in a neutral way, typically using some language
designed speci�cally for this end (an Interface Description Language, IDL), while the imple-
mentations are made using the speci�c languages. The CORBA (Common Object Request
Broker Architecture) architecture [28] is one of the main examples of this model. The
central motivation for the development of CORBA was to allow the development of dis-
tributed applications in heterogeneous environments; language heterogeneity was one of
the aspects taken into consideration.

The challenges existing when designing a �language independent� model for data or
objects, however, are not unlike those in the design of an interface between any two lan-
guages, since this model too describes a type system. When implementing bindings for
any of those object models, it is necessary to de�ne a correspondence between the types
de�ned by the model and those o�ered by the target language, and provide an API for
interaction with the runtime environment � in the case of CORBA, with the ORB (Object
Request Broker).

If on one hand the task may be easier since the model has been designed with language
interaction in mind (unlike, for example, the C type system), on the other one would
usually expect a higher level of transparency in the representation of data. For example,
while in an application integrating C++ and Python the distinction between C++ objects
and Python objects is clear and the Python API de�nes the limits between these two
universes, in an application developed using CORBA one would expect, in both languages,
the manipulation of objects to be the same whether they were implemented in C++ or
in Python. For that, the common solution is to use stubs, objects that give a uniform
native appearance to data, regardless of the language in which they were implemented,
and in the case of distributed models such as CORBA, of the location of the objects in the
network. The correspondence between the life cycles of the stubs and that of the objects
they represent is another factor that should be taken into account. In the Java bindings, for
instance, this is done with the help of the language's own garbage collector. In languages
such as C++ the control of references is explicit.

Other higher-level approaches have been proposed for the integration of applications
developed in multiple languages. Coordination languages such as Linda [12] and Opus [4]

12 CHAPTER 2. INTERACTION BETWEEN PROGRAMMING LANGUAGES

de�ne mechanisms for message passing and a restricted set of constructs to indicate the
�ow of those between agents implemented in other languages.

2.4 C as an intermediate language

The wish for a universal intermediate language is an old one in the world of computing.
Several proposals have surfaced through the years, from the UNCOL project [6] to the
languages with extensible syntax of the 70s [26] to the most recent virtual machine envi-
ronments such as .NET. In practice, the needs that these projects aimed to ful�ll are being
handled through the years in a more pragmatic, if less than ideal, way by using C. Two
reasons make C a common choice as an intermediate language. First, its �medium-level�
nature, by providing at the same time hardware independence and direct manipulation of
memory. Second, the large availability of C compilers, leveraged by the proliferation of
Unix systems in the most varied architectures. So, as time went by, to o�er an interface for
interoperability with other languages gradually became synonymous with o�ering an in-
terface for communication with C code. This is especially true for dynamic languages that
o�er features for application extensibility. Not surprisingly, these languages are typically
implemented in C.

The availability of C APIs provided by di�erent languages also causes C to be widely
used as a �bridge�. The integration between Python and Fortran takes place through
a Python module written in C that accesses a Fortran library, which on its turn exposes
functions using a call convention compatible with C [33]. LunaticPython [27] o�ers bridges
from Lua to Python and from Python to Lua, implemented through a pair of extension
modules for each source language written in C.

However, generic intermediate languages continue to be proposed as alternatives to
C. C-- [18] is a project that attempts to overcome the limitations of C as an intermediate
language making the memory representation of data types more explicit and adding support
to constructs that are not easily represented in C, such as tail recursion. Recent versions
of the GCC compiler suite have standardized an intermediate language for communication
between its various back-ends and front-ends [8].

2.5 Interfaces to C

The C language has, nowadays, a special role in the world of programming languages.
Besides being widely used in the implementation of compilers, interpreters and virtual ma-
chines (the main implementations of Perl, Python, Ruby and Lua are just some examples),
it is also used in compilers as an output format in the generation of portable code (two no-
table examples are the GHC and SmartEi�el [5] compilers, which generate C from Haskell
and Ei�el, respectively). This prevalence of C makes the C API a convenient format for a
foreign language interface.

In the vast majority of cases, the internal representation of code produced by compilers

2.5. INTERFACES TO C 13

for other languages is not compatible with C, be it because of di�erences in call or name
conventions, or because they produce code for execution in virtual machines. This way, to
allow a C program to access this code, the language has to expose a library of C functions
that will perform the necessary translations. In virtual machine environments, this library
is normally generic, o�ering facilities for communication with the virtual machine itself.
For static languages, it is usually necessary to create a speci�c library to perform the
conversion of calls, as it happens in interfaces that expose C++ libraries to C. An example
of this is QtC [20], a library of C bindings to the Qt graphic toolkit, which is implemented
in C++.

For non-imperative languages, there is still the problem of C code potentially generating
side e�ects. Some feature for isolating calls has to be o�ered. In GHC, the construction for
C calls, _ccall_, is de�ned in the IO monad; in the addendum for the Haskell 98 standard,
the ccall directive was integrated, but the use of the monad is optional, requiring the
programmer to ensure that the functions that use it are not pure1.

Another possible source of incompatibility between languages that has to be handled
when they interact is the di�erence between concurrency models. C, in particular, does not
de�ne any concurrency constructs; they are implemented through libraries. At the same
time that it brings great �exibility to the language, this also imposes portability problems
for languages that depend on the availability of concurrency mechanisms in C that are
compatible with the models they use.

For example, APIs between C and Java must take into account the preemptive multi-
threading model adopted by Java. The JNI (Java Native Interface) [21] de�nes functions to
control mutual exclusion between data shared between the two languages. The programmer
must take care to strike a balance between time spent blocking the virtual machine access-
ing shared data and time spent copying data between the environments to reduce sharing.
Another situation in which the concurrency model of the language demands special care
when integrating with C happens in the use of co-routines in Lua. The combination of two
features of Lua, cooperative multitasking with multiple execution stacks and the ability
to alternate between calls to C and Lua functions in a single stack, brings a limitation: a
co-routine cannot execute a yield operation in case there is a C function in its stack, as
there is no portable way to alternate between multiple stacks in C [7].

One of the most frequent motivations in the integration with C code is the use of external
libraries. Exposing a C library through the FLI for access by another language may incur
in the registration of hundreds of functions. It is also usual to de�ne data types that
give to structures de�ned by the library a more native appearance, such as, for example,
converting C functions that register callbacks into Ruby methods that accept code blocks
as a parameter. These initializations and adaptations are usually de�ned as a bindings
library, that serves as a bridge between the language and the C library encapsulating the
interaction with the FLI.

The patterns that arise when producing bindings are so common that they motivated

1A number of additional convention calls are de�ned (stdcall, cplusplus, jvm, dotnet), but ccall
is the only one declared mandatory by the document.

14 CHAPTER 2. INTERACTION BETWEEN PROGRAMMING LANGUAGES

the development of programs that attempt to automate the process. These bindings gen-
erators tend to work using some representation prepared for their use, since analyzing raw
C headers may show itself to be insu�cient: for example, often the program wouldn't
be able to interpret the intention of a construct such as int**. SWIG [1] is a popular
multi-language tool for generation of bindings for C and C++ libraries which de�nes its
own format for description of interfaces. FLIs may as well use stubs generators to save
the programmer from having to write repetitive or non-portable C code. Java features
a generator for C headers containing prototypes for native methods to be implemented.
Pyrex [10] is a generator for C modules for Python from a syntax based on the Python
language itself. Another example is toLua++ [24], a tool for integrating C and C++ code
to Lua, which generates stubs from C headers prepared for use by the program, which may
contain special annotation to help in the conversion process.

2.6 Scripting languages

A model for interaction between languages that has shown to be especially relevant
nowadays is that between statically typed compiled languages, such as C and C++, and
dynamically typed interpreted languages, such as Perl and Python. In [32], Ousterhout
categorizes these two groups as systems programming languages and scripting languages.

These two categories of languages have fundamentally di�erent goals. Systems program-
ming languages emerged as an alternative to assembly in the development of applications,
having as main features static typing, which eases the understanding of data structures in
large systems, and the implementation as compilers, due to concerns with performance. In
contrast, scripting languages are dynamically typed and are implemented as interpreters
or virtual machines. Dynamic typing and the extensive use of higher-level constructs as
basic types, such as lists and hashes, brings greater �exibility in the interaction between
components; in static languages, the type system imposes restrictions to those interactions,
often requiring the programmer to write adaptation interfaces, which makes the reuse of
components harder.

Ousterhout points out that, in a model integrating these two kinds of languages, the
tendency is that systems programming languages will no longer be used to write whole
applications, but will instead be used in the implementation of components, which are
then connected through code written with scripting languages. The convenience o�ered
by high-level interpreted languages allows rapid prototyping and encourages the reuse of
components.

The integration of programs developed in systems programming languages coordinated
through scripting languages has been common practice for a long time now. Shell scripting
in Unix systems is probably the most notable example, where constructs such as pipes
(which connect the output of a process to the input of another one) allow one to perform
tasks combining a series of programs implemented in di�erent languages, or even other
scripts. With the introduction of Tcl [31], this kind of coordination of components through
scripting languages started to take place within applications. In this model, the scripting

2.6. SCRIPTING LANGUAGES 15

language is implemented as a library and is embedded in an application written in a lower-
level language, such as C. Data structures of the application are exposed to the scripting
environment as objects; conversely, the application can launch functions in the scripting
language and access its data. Programmable applications have existed long before that,
typically using little languages created speci�cally for each application, but the concept
introduced by Tcl of implementing scripting languages as C libraries has propelled strongly
the development of extensible applications.

The development model based in two languages does not limit itself to applications that
provide customization through scripts written by the end-user. In many scenarios, there is
a clear distinction between a lower-level layer where performance is a critical factor and a
higher-level layer comprised by coordination operations between elements of the lower layer.
Typical examples are graphic applications where the interface is described by scripting
languages controlling components implemented in C and games where the logic is described
in scripts and the rendering engine is implemented in lower-level languages. This greater
prominence of scripting languages, where they stop being just an application extension
mechanism and start having a more central role in the coordination of the execution of the
program, has also promoted an inverted model of interaction between languages, where the
application itself is written using the scripting language and libraries written in lower-level
languages are loaded as extension modules.

16 CHAPTER 2. INTERACTION BETWEEN PROGRAMMING LANGUAGES

Chapter 3

Scripting language APIs

Interfaces provided by scripting languages are usually understood as �extension APIs�:
they extend the virtual machine with features not originally o�ered by it, or alternatively,
they extend an external application with the features o�ered by the runtime environment
of the language, embedding it to the application. The �rst scenario is the one used in the
programming model where the high-level coordination is made by an interpreted language
and modules written in languages such as C and C++ are used to access external libraries
or to implement performance-critical parts. The second scenario, in general, will also
encompass the �rst one, when exposing to the embedded virtual machine extensions that
will allow it to talk to the host application.

Both scenarios involve the same general problems: data transfer between the two lan-
guages, including how to allow the scripting language to manipulate structures declared in
C and vice versa; handling the di�erence between the memory management models, more
speci�cally the interaction between garbage collection in the virtual machine and explicit
deallocation in C; calling functions declared by the scripting language from C; and the
registration of C functions so that they can be invoked by scripts. The following sections
discuss the main issues involved in the communication between C code and scripting lan-
guages, and present the approaches employed by the Python, Ruby, Java, Lua and Perl
APIs when handling these issues. Each section concludes with a comparison where the
di�erent designs presented in the exposition of each language are reviewed side by side and
thus put into perspective.

3.1 Data transfer

The main complexity in the interaction between programming languages is not the
di�erences in syntax or semantics from their control �ow structures, but in their data
representations. In the communication between code written in two di�erent languages,
data �ow in various forms: as parameters, object attributes, elements in data structures,
etc.

Often, the format how these data are represented di�er. In those cases, there are three

17

18 CHAPTER 3. SCRIPTING LANGUAGE APIS

alternatives to perform data transfer between the languages. The simplest is to expose the
data to the target language as an opaque entity. The target language receives only some
kind of handle that allows it to identify the datum uniquely in operations requested later.
This approach is useful, for example, if a language is just storing data for the other one,
in order to make use of higher-level data structures o�ered by the language.

Another approach involves perform some conversion to the data from the type system
of one language to that of the other. The duplication that takes place in this conversion
limits the applicability of this method, restricting its use typically to numeric types and,
in minor scale, strings. Finally, the source language may explicitly o�er facilities in the
target language to manipulate these data, that is, one language would o�er an API for the
other. The di�erence between this approach and the �rst one is that, while in the former
the contents of the data remain opaque, here the API de�nes some means to manipulate
their contents.

Because of its focus on the manipulation of pointers and structures, C provides a small
set of basic types. Besides, C is very liberal with regard to the internal representation
of its structured types, with each di�erent platform having to de�ne its own application
binary interface (ABI). So, even in cases where it is possible to link C code directly using
compatible basic types and appropriate calling conventions (such as in Free Pascal or several
Fortran compilers), bindings libraries are still usually needed to make the manipulation of
complex types more convenient.

Even in the fundamental numeric types, there are several precautions that must be
taken. Some languages, like Smalltalk and Ruby, perform automatic conversion of integers
to �big integers� (bignums). In Ruby, in particular, primitive integers have 1 bit less of
precision than the machine's word size. There may also be the need to handle conversion
of endianness and format of �oating point numbers.

For types such as strings, the size of values brings also concerns with performance. In
many cases the internal representation used for strings is the same as used in C, so an
option is to simply pass to the C code a pointer to the address where the string is stored,
which avoids copying of data, under risk of allowing the C code to modify the contents of
the string. Exposing to C code pointers to memory areas within the runtime environment
of the other language may also bring concurrency problems, in case the environment uses
multiple threads.

When exposing to C data of structured types, the conversion to a native C type, in many
cases, is not an option. Besides the issue of quantity of data to be converted, structured
types in C are de�ned statically, therefore not serving to represent conveniently data of
dynamic structures, such as objects that may gain or lose attributes or even change class
during runtime. Even in languages with static types, like Java, the copy of objects is not
usually an interesting option due to the volume of data. Copying of structured objects
tends to be restricted to speci�c operations such as manipulation of arrays of primitive
types.

The alternative to allowing C code to operate over structured data, thus, is to provide
to it an API that exposes as functions the operations de�ned over those types. This
also avoids the need to control the consistency between two copies of a given structure.

3.1. DATA TRANSFER 19

Consistency problems, however, may occur if the API allows the C code to store pointers
to objects from the language � this makes it necessary for the programmer to manage
explicitly the synchronicity between pointers and the life cycles of objects that may be
subject to garbage collection. Section 3.2 discusses this issue in greater detail.

3.1.1 Python

All values in the Python virtual machine are represented as objects, mapped to the
C API as the PyObject structure [44]. More speci�c types such as PyStringObject,
PyBooleanObject and PyListObject are PyObjects by structural equivalence, that is,
they can be converted through a C cast. Re�ecting the dynamic typing model of Python,
the API functions use PyObject* as a type every time they refer to Python objects, even
when they are designed to act on Python values of more speci�c types, such as for example
the PyString_Size, that returns the length of a string. Each speci�c type has a check
function in the API, such as PyNumber_Check and PyDict_Check.

Python is a strongly typed language: each object is tied to a type. Types are repre-
sented by PyTypeObject structures, which are also structurally equivalent to PyObject.
Each Python type has a prede�ned PyTypeObject in the API, such as PyString_Type,
PyBoolean_Type and PyList_Type. PyObject_TypeCheck compares the type of a PyObject
to a PyTypeObject passed as an argument.

For the conversion of data from C to Python, the language o�ers a series of functions
that receive values of primitive C types as an argument, such as PyString_FromString-
AndSize and PyFloat_FromDouble. Each of those functions returns to the C code a pointer
to a new PyObject. Strings passed are copied by Python. The following example illustrates
the creation of a Python object through the conversion of a C value:

PyObject* s = PyString_FromString("hello");

The two examples below are equivalent, and illustrate type checking through the API,
�rst through a convenience function, and then explicitly, comparing the type of a string
Python with PyString_Type:

if (PyString_Check(s)) printf("Yes.\n");

if (PyObject_TypeCheck(s, PyString_Type)) printf("Yes.\n");

For returning data from Python to C, a complementary set of functions is o�ered,
mapping the basic types of Python back to C types. Some examples of those functions
that take a PyObject pointer as an argument and return the correspondent C datum are
PyLong_AsUnsignedLong and PyString_AsStringAndSize. Di�erently from the input
functions, in these output functions no string copying takes place: the strings returned
are pointers to memory stored internally by Python. The documentation recommends
not to modify the content of the string except if the memory area was returned by a call
to PyString_FromStringAndSize(NULL, size) [46]. This way, it is possible to allocate a
string for storage in Python and �ll its contents later through C code, as in the following
example:

20 CHAPTER 3. SCRIPTING LANGUAGE APIS

/* allocating an uninitialized string in Python */

PyObject* obj = PyString_FromStringAndSize(NULL, 51);

/* obtaining the pointer to the string memory area */

char* s = PyString_AsString(obj);

/* Now, we can fill the string in C. An example: */

for (int i = 0; i < 5; i++, s+=10)

snprintf(s, 11, "[%-8d]", random());

For some of its basic types that do not have direct correspondence in ANSI C 89, Python
de�nes equivalent C types: Py_UNICODE and Py_complex. These types were added in order
to expose the internal representation of data used by Python in numeric manipulation
and Unicode text modules implemented in C, avoiding frequent conversions to and from
PyObject.

Python also o�ers some versions of its C conversion functions as macros without type
checking, assuming that the given PyObject will be compatible, o�ering better perfor-
mance in expense of safety. These functions can be identi�ed by their uppercase names.
Among the conversion macros provided are PyString_AS_STRING, PyInt_AS_LONG and
PyUnicode_AS_UNICODE.

Besides functions for type conversions between Python and C, the Python API also of-
fers some conversion functions between Python types. These functions receive a PyObject

as an argument and return a new PyObject with the result of the conversion, and are equiv-
alent to Python functions that perform these conversions (actually calls to PyTypeObject

types that answer to the __call__ method). For example, the PyObject_Str function is
equivalent to the Python function str.

In Python, objects are stored in modules, which are namespaces declared globally, or
as attributes of objects. Variables are stored in an environment, represented as a dic-
tionary. Functions such as PyRun_File receive, among their parameters, a dictionary of
global variables and another of local variables. The set of global variables and functions
is represented as the dictionary of the __main__ module. Built-in objects are accessible
through the __builtin__ module. For example, to obtain the str object, we will initially
obtain a reference to the __builtin__ module using the PyImport_AddModule function
and then the module's dictionary with the PyModule_GetDict function.

PyObject* builtins_module = PyImport_AddModule("__builtin__");

PyObject* builtins = PyModule_GetDict(builtins_module);

PyObject* str = PyDict_GetItemString(builtins, "str");

In Python, str is a callable object, which acts as the string conversion function. So,
once we obtained a reference to the PyObject equivalent to str, the following call is the
same as calling PyObject_Str on a given Python object obj:

/* This is a vararg function that receives as additional arguments a

NULL-terminated list with PyObjects to be passed to the Python function

given in the first argument */

PyObject* result = PyObject_CallFunctionObjArgs(str, obj, NULL);

3.1. DATA TRANSFER 21

The storage of C data in the Python object space can be done in two ways. One way
is to create an object of the CObject type encapsulating a C pointer, building this way
a value that will be opaque to Python. The allocation functions for objects of this type
allow to associate to the datum a C function to be called when the CObject is deallocated.
According to the Python documentation, CObjects have as their main purpose passing C
data between extension modules [46].

The other way is to declare new Python types through C structures. In C, a Python type
is described in two parts: a struct type, from which instances of the type will be produced,
and an instance of the PyTypeObject struct, which will describe the type to Python. The
following example illustrates the creating of a new Python type in C. Initially, we have
point, which will be the C type of object instances:

typedef struct {

PyObject_HEAD

int x, y;

} point;

The PyObject_HEAD macro ensures structural equivalence with PyObject. When func-
tions return the object to C code as a PyObject*, this will be able to be converted back
to point through a cast, giving then access to the x and y attributes. We will also de�ne
a function that operates on objects of this type:

PyObject* point_distance(point* p) {

return PyFloat_FromDouble(sqrt(p->x*p->x + p->y*p->y));

}

This function was de�ned with a PyObject* return type so that it can be registered in
the Python virtual machine. To associate the function to the Python type, we will initially
store it in an array of PyMethodDef structures, which will list the type's methods:

static PyMethodDef point_methods[] = {

{ "distance", (PyCFunction) point_distance, METH_NOARGS },

{ NULL }

};

To make the attributes of the type are visible from Python, we will have to implement
an access routine, that receives the object and the name of the accessed attribute. Its
implementation is given below:

PyObject* point_getattr(PyObject* self, char* name) {

if (strcmp(name, "x") == 0)

return PyInt_FromLong(((point*)self)->x);

else if (strcmp(name, "y") == 0)

return PyInt_FromLong(((point*)self)->y);

else

return Py_FindMethod(point_methods, self, name);

}

22 CHAPTER 3. SCRIPTING LANGUAGE APIS

Once it is registered in the type description, this function will be responsible for return-
ing the type's attributes and methods. This way, we can expose to the Python environment
attributes stored in the C struct. The Py_FindMethod function locates a function in the
array given as its parameter and returns it as a method1.

Finally, we will de�ne point_type, which will be the PyTypeObject that will describe
the Python type relative to point2:

static PyTypeObject point_type = {

PyObject_HEAD_INIT(NULL)

.tp_name = "point", /* The name of the class */

.tp_basicsize = sizeof(point), /* The size of the memory area to be allocated */

.tp_getattr = point_getattr, /* The attribute access function */

.tp_flags = Py_TPFLAGS_DEFAULT /* This class does not require special treatment */

};

Again, a macro was used at the top of the de�nition to ensure structural equivalence.
PyTypeObject has many other �elds, but we will keep them NULL so that they will be �lled
with default values during the construction of the type at runtime. The PyTypeObject

type contains a number of �elds that allow to describe the behavior of the declared type.
In the tp_getattr �eld of point_type, we speci�ed that the C function to be used to
handle access to attributes will be point_getattr. We speci�ed Py_TPFLAGS_DEFAULT in
the �ags �eld to indicate that this is a class with a default behavior, without the need for
special treatment such as cycle checking during garbage collection.

While the in-memory representation of Python objects of the user-de�ned type are in-
stances of point, to create a new object it is not enough to allocate an instance of point
and use it as a PyObject through casting. It is necessary to initialize the object so that
it is registered in the garbage collection mechanism and it has the �elds of its PyObject
header properly initialized. The allocation in C of new objects of a user-de�ned type must
be done through the PyObject_New macro, which receives as arguments the type of the
struct to be allocated and the PyTypeObject that corresponds to the type. The docu-
mentation recommends assigning the default construction function, PyType_GenericNew,
during runtime for portability reasons [44]. Finally, any unde�ned �elds of the struct are
�lled by the PyType_Ready function.

point_type.tp_new = PyType_GenericNew;

if (PyType_Ready(&point_type) < 0) return;

From there on, instances can be created with PyObject_New, as in the example below:

/* Creates an instance */

point* a_point = PyObject_New(point, &point_type);

a_point->x = 100; a_point->y = 200;

/* Stores the instance in the Python global 'P',

assuming the globals dictionary was stored in 'globals' */

PyDict_SetItemString(globals, "P", (PyObject*) a_point);

1Registration of Python functions will be discussed in detail in Section 3.4.1.
2For brevity, we will present the example using the C99 syntax for structs, saving us from listing the

elements that will be initialized with NULL, as the PyTypeObject struct has 54 �elds in total.

3.1. DATA TRANSFER 23

Once declared in C, this value can be used by Python code:

print 'P.x = ' + str(P.x)

print 'P.y = ' + str(P.y)

print 'd = ' + str(P.distance())

The Python API has a large number of functions for manipulation of prede�ned types
in the language. Tuples deserve a special mention with regard to data transfer between
Python and C, as they are used in several contexts: when passing arguments to Python
functions from C, when receiving input arguments in C functions and also when passing
and receiving multiple return values, as we will see in Sections 3.3.1 and 3.4.1.

As tuples are frequently used as a �bridge� between Python and C, the API o�ers
a convenience function, PyArg_ParseTuple, that saves the programmer from having to
perform access and type checking of the tuple elements one by one. This is a vararg C
function that receives as arguments the tuple, a string indicating the types of expected
arguments and the addresses where the values, converted to C types, should be stored.
The function de�nes a syntax for expected type identi�ers in the given string and the
correspondent C types. For example: "s#" indicates that the tuple should contain a
Python object of the string or Unicode type and that two parameters should be passed
to the C function, with types const char** and int*, that will return the string pointer
and its size, respectively. In a more elaborate example, "iiO!|(dd)" indicates that the
function expects two integer addresses ("ii"), followed by the address of a PyObject

pointer ("O") and a PyTypeObject to be used when type checking the received object ("!")
and optionally ("|"), two addresses of double values given to Python through another
tuple ("(dd)").

In a similar fashion, the Python API has the Py_BuildValue, which allows the con-
struction of structured objects, such as tuples, lists and dictionaries, in a single call. This
function is frequently used both in the construction of the argument tuple when calling
functions and in the construction of return values. The syntax of the parameter string
resembles that of PyArg_ParseTuple, but it features a di�erent set of type indicators,
and allows to describe lists and dictionaries. For example, the following call creates a list
containing an integer, a �oating point number and a dictionary containing an element with
a string key and an integer value:

PyObject* list = Py_BuildValue("[id{si}]", 123, 12.30, "foo", 1234);

This is equivalent to the following Python construct:

list = [123, 12.30, {"foo": 1234}]

3.1.2 Ruby

For the communication of data between Ruby and C, the Ruby API de�nes a C data
type called VALUE, which represents a Ruby object. VALUEmay represent both a reference to

24 CHAPTER 3. SCRIPTING LANGUAGE APIS

an object (that is, a pointer to the Ruby heap) as well as an immediate value. In particular,
the constants Qtrue, Qfalse and Qnil are de�ned as immediate values, allowing them to
be compared in C using the == operator.

For type checking, Ruby provides the Check_Type and TYPEmacros. Check_Type allows
one to compare the type of values to constants that describe basic types of Ruby such as
T_OBJECT and T_STRING. TYPE returns the constant relative to the type of a given value.
To check the class of an object, one should use rb_class_of.

When transferring numeric values, the conversion between C and Ruby is made through
macros such as INT2NUM and functions such as rb_float_new, which receive or return
VALUEs.

For passing strings to Ruby from C, the API provides the rb_str_new function, which
receives a pointer and a numeric size argument, allowing the use of strings containing null
characters, and the rb_str_new2 function, which assumes a standard C string, with the
null character as a terminator. These functions make a copy of the C string to the data
space of Ruby. VALUEs that point to Ruby strings allow C code to access and modify their
contents through the RSTRING(a_string)->ptr cast. However, the API recommends the
use of the StringValue macro, which returns the VALUE itself in case it is a string, or a
new VALUE of the String class produced through the to_s conversion method applied to
the given object (or raises a TypeError exception in case the conversion was not possible).

void show_value(VALUE obj) {

const char* s;

if (TYPE(obj) == T_STRING) {

/* This would make an illegal access if TYPE(obj) != T_STRING */

s = RSTRING(obj)->ptr;

} else {

/* Works for any type that accepts obj.to_s,

otherwise, raises an exception */

s = StringValue(obj);

}

printf("Value: %s\n", s);

}

Under the justi�cation of increasing performance on access, some other Ruby types
such as Array, Hash and File allow low-level access to the members of structures used in
the implementation of their objects. For example, with RARRAY(an_array)->len one can
read the size of an array directly. The recommendation of the API is to use this kind of
access for reads only, since the modi�cation of these values can easily make the internal
state of objects inconsistent.

For storing C data in the Ruby object space, the API provides a macro, Data_Wrap_Struct,
which receives a C pointer and creates a Ruby object which encapsulates this pointer. The
pointer can be accessed from C code using Data_Get_Struct, bet not from Ruby. A C
function to be executed when the object is collected is also passed to Data_Wrap_Struct.
For example, we will create a Point class, similar to the Python type de�ned in the previous
section. We will initially de�ne a C type:

3.1. DATA TRANSFER 25

typedef struct {

int x, y;

} point;

Allocation and deallocation functions for the Point class (point_alloc and point_free)
follow:

void point_free(void* p) {

free(p);

}

VALUE point_alloc(VALUE point_class) {

point* p = malloc(sizeof(point));

/* The 2nd argument is the mark function for garbage collection

(NULL here as the type doesn't store VALUES), see Sec. 3.2.2 */

return Data_Wrap_Struct(point_class, NULL, point_free, p);

}

Notice that Data_Wrap_Struct makes use of a VALUE that represents the Point class
in Ruby. Classes are created in C with the rb_define_class function. This function gets
a C string with the name of the new class and a VALUE to be used as a superclass (such
as for example the rb_cObject constant, which represents the Object Ruby class) and
returns a VALUE representing the new class. For classes such as Point, whose instances will
contain C data, it is possible to register a C function that will be responsible for allocating
memory of instances using the rb_define_alloc_func function. So, the creation of the
class and the registration of the allocation function are done as follows:

VALUE point_class = rb_define_class("Point", rb_cObject);

rb_define_alloc_func(point_class, point_alloc);

Like in Ruby code, the declaration of object attributes is done in the initialize

method, which can be implemented in C:

VALUE point_initialize(VALUE self, VALUE x, VALUE y) {

point* p;

Data_Get_Struct(self, point, p);

p->x = NUM2INT(x);

p->y = NUM2INT(y);

return self;

}

The method is registered in the class at runtime with the rb_define_method function
(the registration of C functions in Ruby will be discussed in detail in Section 3.4.2).

rb_define_method(point_class, "initialize", point_initialize, 2);

To ensure that the copy of objects through Ruby's dup and clone methods will han-
dle correctly the data stored through C, it is necessary to register the initialize_copy

method. A possible implementation in C is given below:

26 CHAPTER 3. SCRIPTING LANGUAGE APIS

VALUE point_initialize_copy(VALUE copy, VALUE orig) {

point* p_copy;

point* p_orig;

/* Ruby may call this function with the same object in both args;

in this case, ignore the call and return the object */

if (copy == orig) return copy;

/* Obtain the pointers stored in the objects */

Data_Get_Struct(orig, point, p_orig);

Data_Get_Struct(copy, point, p_copy);

/* Copy of the �C part� of the object */

p_copy->x = p_orig->x;

p_copy->y = p_orig->y;

/* Returns the copy */

return copy;

}

We will complete the example with a C function implementing the distance method,
like it was done in the previous section for Python:

VALUE point_distance(VALUE self) {

point* p;

Data_Get_Struct(self, point, p);

return rb_float_new(sqrt(p->x*p->x + p->y*p->y)));

}

These functions are also registered as methods of Point:

rb_define_method(point_class, "initialize_copy", point_initialize_copy, 1);

rb_define_method(point_class, "distance", point_distance, 0);

The rb_class_new_instance function produces new Ruby objects that are instances
of the class, receiving a C array of VALUEs to be passed during object initialization and the
class VALUE.

Access of Ruby values is done through the rb_*_get family of functions, which return
VALUEs relative to attributes of objects or classes, global variables and constants. For
each of those there is an analogous rb_*_set function3. The rb_iv_get and rb_ivar_get

functions, for example, obtain object attributes (instance variables). The �rst form uses
C strings as names, the latter uses IDs, identi�ers that replace interned strings in Ruby's
symbol table, that can be obtained using the rb_intern function. In fact, IDs correspond
to the symbol Ruby type, which in practice are immutable strings. The following example
obtains the value of a global variable g and sets it to the �eld f of an object, and then sets
the value of the global variable to zero:

/* Obtains the global variable */

VALUE g = rb_gv_get("g");

3Constants can be created with the Qundef value and have their value de�ned later once with
rb_const_set.

3.1. DATA TRANSFER 27

/* Sets the field f of object obj */

VALUE obj = rb_gv_get("obj");

rb_iv_set(obj, "f", g); /* Same as: rb_ivar_set(obj, rb_intern("f"), g); */

/* Zeroes the global variable */

rb_gv_set("g", INT2NUM(0));

IDs are never collected: we observed that the symbol table is not cleaned up even
after ruby_finalize. So, a C application that o�ers a scripting interface creating sup-
posedly isolated environments, surrounding each script execution with ruby_init and
ruby_finalize, may have its memory consumption increased inde�nitely as scripts create
symbols.

3.1.3 Java

The JNI de�nes in the jni.h header C types equivalent to each of Java's primitive
types (jint for int, jfloat for float, and so on). The �reference types�, such as classes
and objects, are exposed to C as opaque references, instances of jobject. Strings and
arrays are also objects in Java and are thus exposed as instances of jobject. However,
the JNI de�nes as a convenience some C types that act as �subtypes� of jobject: jclass,
jstring, jthrowable, jarray, jobjectArray, and an array type for each primitive type
(jbooleanArray, jbyteArray, etc.). The jvalue type is a union of primitive and reference
types. The NULL C value corresponds to Java's null.

Di�erent methods are employed for reading primitive types, strings, arrays and other
objects. Reading the contents of a jstring in C requires the conversion from the internal
format used by Java, UTF-16. The API o�ers a utility function that allocates a string
containing the representation of the text in UTF-8 (which is an ASCII-compatible format),
GetStringUTFChars. This string must be later deallocated with ReleaseStringUTFChars.
The GetStringChars function provides direct access to the string in UTF-16 format; it has
an output argument that indicates if the returned string is the JVM's own internal bu�er
or if it is a copy. At the same time that this saves the C code from duplicating the string
in cases when one wants to modify it and the JVM has returned a copy, this parameter
exposes to the API low-level issues of the JVM string management. Alternatively, the
GetStringRegion and GetStringUTFRegion functions perform a copy of the string to a
pre-allocated bu�er provided by the programmer. GetStringCritical returns a pointer
to the JVM internal bu�er, but this involves special care with regard to garbage collection,
which will be discussed in Section 3.2.3.

Arrays of primitive elements are handled in a similar way to strings, di�erently from ob-
ject arrays4. There are functions for performing array copies (Get/Set<type>ArrayRegion),
functions akin to GetStringChars that return pointers to the array that may or may not
perform copies (Get/Release<type>ArrayElements) and functions that can access the
JVM internal bu�er, like in GetStringCritical (Get/ReleasePrimitiveArrayCritical).
For object arrays, it is not possible to obtain a pointer to an array's internal bu�er. Access

4Multi-dimensional arrays are considered as �arrays of arrays� and, as such, are also object arrays.

28 CHAPTER 3. SCRIPTING LANGUAGE APIS

public class ExampleJNI {

private String[] elements = { "Earth", "Air", "Fire", "Water" };

/* Declaration of the externally implemented method */

private native void secondElement();

public static void main(String[] args) {

/* Creates an instance and invokes the native method */

new ExampleJNI().secondElement();

}

static {

/* Loads in the JVM the external code that will implement

the secondElement method */

System.loadLibrary("ExampleJNI");

}

}

Figure 3.1: Java class containing an externally implemented method

to elements is performed one at a time, through jobject references, with Get/SetObject-
ArrayElement.

The retrieval of values and attributes is done through functions such as GetObjectField
and GetStaticField, which return reference of the jobject type. For each primitive
type there is an equivalent type, such as GetIntField and GetStaticIntField. Like
in Ruby, the Java API de�nes a speci�c C type to avoid the frequent use of C strings
in the description of �elds. However, while ruby uses IDs which are merely interned
strings, in Java �eld identi�ers, of the jfieldID type, contain type information and
are speci�c for a �eld of a given class. These values are obtained with the GetFieldID

call, which receives among its arguments a string called the �JNI �eld descriptor� with
a special syntax. For example, the Java type int[][] is described with "[[I" and
the java.lang.String type as "Ljava/lang/String;"5. It is also possible to obtain a
jfieldID from a java.lang.reflect.Field object using the FromReflectedField func-
tion.

JNI calls are done in C with (*J)->function(J, ...): JNI functions are accessed through
function pointers stored in a table pointed by a JNIEnv structure, which is then propagated
in calls. The goal of these two levels of indirection is to decouple the linkage of calls in
C code from the library that implements the JNI, allowing to link the code at runtime to
di�erent implementations of the JVM [36].

The access to Java attributes in C code is illustrated through the following example.
Initially, in Figure 3.1, we implement a Java class that has a private attribute, the elements
array, and de�nes a function, secondElement, to be implemented in C6.

5This is another place where implementation details leak through the API. Not coincidently, this syntax
is the same used in the internal representation of types in JVM bytecodes.

6Details about the declaration and registration of functions implemented in C will be discussed in
Section 3.4.3.

3.1. DATA TRANSFER 29

#include <jni.h>

#include <stdio.h>

#include "ExampleJNI.h"

JNIEXPORT void JNICALL

Java_ExampleJNI_secondElement(JNIEnv* J, jobject this) {

/* Get the class of 'this': ExampleJNI */

jclass klass = (*J)->GetObjectClass(J, this);

/* Get ExampleJNI.elements, a String[] */

jfieldID elemsID = (*J)->GetFieldID(J, klass,

"elements", "[Ljava/lang/String;");

/* Get the contents of ExampleJNI.elements */

jarray elems = (*J)->GetObjectField(J, this, elemsID);

/* elems_1 = elements[1] */

jstring elems_1 = (*J)->GetObjectArrayElement(J, elems, 1);

/* Get the representation of elems_1 as a C string */

const char* elems_1_c = (*J)->GetStringUTFChars(J, elems_1, NULL);

/* Show the string */

printf("%s\n", elems_1_c);

/* Free the memory of the string */

(*J)->ReleaseStringUTFChars(J, elems_1, elems_1_c);

}

Figure 3.2: C code implementing a Java method

The implementation of secondElement is presented in Figure 3.2, showing the sequence
of calls needed to obtain in C the element of the Java array. To access the elements at-
tribute, the function has to obtain the �eld identi�er. For that, we need �rst to obtain
a reference of the current class with GetObjectClass from the object reference (this)
passed a parameter to the function. Once we have the class reference (klass), we ob-
tain the �eld identi�er with GetFieldID. The content of the �eld is then obtained with
GetObjectField: a reference to the array. Using it, the element of the array is obtained
with GetObjectArrayElement. A copy of the element, converted to a UTF-8-encoded C
string, is returned with GetStringUTFChars. As previously discussed, after its use, the
string must be freed with ReleaseStringUTFChars.

The manipulation of objects of the Class type is also done through speci�c functions.
It is not possible to create Java classes through the C API, but it is possible to load
classes at runtime using the DefineClass function, which receives a bu�er containing the
representation of a pre-compiled Java class. References of the jclass type can be obtained
from the class name using FindClass, which uses a syntax for descriptors similar to that
used by GetFieldID7.

For assigning C values that can be converted to Java primitive types, the JNI provides
functions such as SetIntField and SetFloatArrayRegion. For other types, there are no

7In both �eld and class descriptors, "[Ljava/lang/String;" represents String[]. For the String

type, however, "Ljava/lang/String;" is the �eld descriptor and "java/lang/String" the class descrip-
tor.

30 CHAPTER 3. SCRIPTING LANGUAGE APIS

speci�c provisions for storing C data in the Java object space. In those cases, the docu-
mentation suggests the storage of pointers in numeric types [21], in spite of the portability
limitations brought by this approach.

3.1.4 Lua

The Lua API de�nes a di�erent approach for manipulating data in C: no pointers or
handles to Lua objects are ever exposed to C code. Operations are de�ned in terms of
indices of a virtual stack. So, data transfer from C to Lua takes place through functions that
receive C types, convert them to Lua values and stack them, such as lua_pushboolean,
lua_pushinteger and lua_pushlstring. Several operations of the API operate on the
value at the top of the stack, such as, for example, lua_setglobal8:

lua_pushinteger(L, 123); /* Inserts the number 123 in the stack */

lua_setglobal(L, "foo"); /* Sets the number 123 to global foo */

Most lookup functions, however, allow one to speci�c any stack index (with positive
values for indexing from the bottom and negative values for indexing from the top).

Conversion of data from Lua to C is made through functions such as lua_tonumber and
lua_tolstring, which receive a stack index, convert the value at the given index to the
speci�ed Lua type if necessary, and return the value converted to the equivalent C type.
Numbers have the lua_Number C type, which corresponds to double by default but is a
compile-time parameter for the Lua virtual machine. Strings, in particular, are immutable
objects and are interned: any two identical strings share the same internal representation.

So, unlike languages such as Python and Ruby, it is not possible to modify the contents
of a Lua string from C through its memory representation as a char*. To make the incre-
mental construction of Lua strings from C more e�cient, the Lua auxiliary library de�nes
a C type called luaL_Buffer and functions such as luaL_addstring and luaL_addvalue,
which allow the construction of a string in stages until it can be �nally converted to a
Lua string with luaL_pushresult. This way, one avoids consecutive string concatenation
operations through the Lua API.

Lua de�nes two speci�c data types for storing C data, full userdata and light userdata.
Full userdata describe memory blocks managed by Lua and used by C code. They exist
in Lua as opaque objects, and are created by lua_newuserdata, which inserts the new
object in the Lua stack and returns to C a pointer to the memory area of the requested
size. Objects of the light userdata type, created through lua_pushlightuserdata, allow
storing C pointers in Lua; allocation and management of the memory block are to be
handled by C code. The following example illustrates the use of userdata, assuming the
same point struct de�ned on page 25. The userdata object is created this way:

/* Creates a full userdata, inserts it in the stack and returns

the pointer to C. The memory is allocated by Lua */

8API functions that operate on a Lua execution state receive an initial argument (in our examples,
called L), indicating the state they refer to. This will be discussed later, in Section 3.4.4.

3.1. DATA TRANSFER 31

point* full_p = (point*) lua_newuserdata(L, sizeof(point));

/* We then use the pointer in C... */

full_p->x = 100; full_p->y = 200;

/* Assigns the object to the global variable Point */

lua_setglobal(L, "Point");

Now, accessing it:

/* Pushes the global Point */

lua_getglobal(L, "Point");

/* Gets the C pointer from the userdata at the top of the stack (-1) */

point* p = (point*) lua_touserdata(L, -1);

printf("(%d,%d)\n", p->x, p->y);

/* Restores the stack to its original position, removing the item.

It won't be collected, as it is tied to the global variable */

lua_pop(L, 1);

Assuming that the global Point is the only reference to this block, to free it all we
have to do is overwrite Point with, for example, nil; the memory of the full userdata will
then be eligible for retrieval by the garbage collector, like that of any Lua value with no
references.

lua_pushnil(L);

lua_setglobal(L, "Point");

The stack storage area does not adjust itself dynamically and the API functions do not
perform over�ow checks. So, the programmer is responsible for controlling the stack size,
through the lua_checkstack function. In practice, the stack size will only grow in loops
pushing elements, since typical sequences of operations tend to push values and pop them
later.

Tables are the only type available for construction of data structures in Lua. Lua o�ers a
complete API for manipulation of tables from C. Tables can be created with lua_newtable

or lua_createtable; the second form allows one to pre-allocate memory for table elements.
The lua_gettable and lua_settable implement the semantics of reading and writing
�elds to a Lua table, including eventual calls to metamethods; for calls without metamethod
invocation there are lua_rawget e lua_rawset, which are equivalent to rawget e rawset in
Lua (besides two convenience variants, lua_rawgeti and lua_rawseti). There is also the
lua_next function, equivalent to the Lua function next, which is designed for traversing
elements of a table. An example of table manipulation is given below:

/* tbl["key"] = 12345, in C: */

lua_getglobal(L, "tbl");

lua_pushstring(L, "key");

lua_pushinteger(L, 12345);

/* lua_settable inserts the item at the top of the stack

to the table given as a parameter,

using as a key the item right below the top: */

lua_settable(L, -3);

32 CHAPTER 3. SCRIPTING LANGUAGE APIS

Many Lua concepts are represented through tables � the global environment, metata-
bles, registry � are are thus handled in C using the API functions for table manipulation.
The global environment table of the currently executing thread can be accessed through
a special index of the virtual stack, LUA_GLOBALSINDEX. One can also de�ne a function
environment table, indexed with LUA_ENVIRONINDEX, to isolate data to be shared inter-
nally by functions in modules written in C. For example, the global environment can be
manipulated as a table this way:

lua_pushstring(L, "Point");

lua_gettable(L, LUA_GLOBALSINDEX);

This is equivalent to:

lua_getglobal(L, "Point");

3.1.5 Perl

The procedures for extending and embedding Perl are very di�erent from each other.
For extensions, Perl provides an interface description language called XS. Instead of isolat-
ing the access to Perl's internal structures through a public API, the proposed approach is
to encapsulate the process of generating wrapper code for the communication of functions
written in C to the internal structures of Perl using interfaces written in XS. Files of the
.xs type contain C code along with annotation that simpli�es the handling of input and
output parameters. These are fed to the xsubpp pre-processor, which generate then code
using the API provided by the Perl library. This library o�ers low-level access to the inner
workings of the interpreter, allowing one, for example, to manipulate its internal stack
pointer. The goal of XS is to hide these details from the extension developer.

To embed the Perl interpreter to an application, the library that implements it o�ers
some functions that allow one to launch an interpreter. In the higher-level API, one can
build an array of arguments to be passed to the interpreter in the same way as options are
given to the Perl command-line interpreter, even using the "-e" �ag to execute pieces of
code.

The types of Perl variables are mapped to C structs: SV for scalars, AV for arrays, HV
for hashes. These C values are better understood as containers to Perl values: a scalar
variable in Perl has an SV associated to itself; however, one can create in C an SV that is
not associated to any Perl variable name.

Primitive types of Perl are represented as C values through typedefs: IV, UV, NV and PV

correspond, respectively, to signed and unsigned integers, �oating-point values and strings.
These values can be copied to SVs. Perl references are represented as RV, and are also a
kind of SV. There is also the GV type, which represents any type representable through a
Perl variable.

Variables from the Perl data space are accessed with get_sv, get_av and get_hv.
These functions receive a C string with the variable name (possibly quali�ed through the
"package::variable" syntax). The content of scalar values are converted back to C types

3.1. DATA TRANSFER 33

with the Sv* macros: SvIV returns an integer, SvPV returns a char* and the string length
in the second argument, etc. The following C code prints the contents of the Perl variable
$a, assuming it contains an integer value:

printf("a = %d\n", SvIV(get_sv("a", FALSE)));

The �ag given as a second argument for get_sv/av/hv indicates whether the variable
should be created if the given name does not correspond to an existing variable. Passing
an unexisting name and using TRUE as the second argument is a convenient way to create
a new variable accessible from the C space and at the same making its binding in the Perl
space.

/* Creates a variable of the array type,

accessible in Perl as the global @arr and in C as the AV* arr */

AV* arr = get_av("arr", TRUE);

An SV can be created in C with the newSV* family of functions: newSViv generates a
new SV storing a signed integer; newSVpv stores a string, and so on. The newSV function
creates a SV with an uninitialized memory area, accessible through the SvPVX function,
providing a way to create scalars with arbitrary values generated by C code. Using the
same example of the point struct from previous sections, we can store a C object in a Perl
value in the following way:

/* Allocates an uninitialized SV, the size of a point */

SV* v = newSV(sizeof(point));

/* Gets the pointer to the SV's memory area */

point* p = (point*) SvPVX(v);

/* Manipulates the point in C. When v is returned to Perl,

it will be an opaque variable (its contents won't be accessible) */

p->x = 100; p->y = 200;

Values are assigned to SVs using the sv_set* family of functions: sv_setiv, sv_setpv,
etc. Functions for string handling have variants such as newSVpvn and sv_setpvf, which
receive the string length or perform sprintf-style formatting. For strings, there are also
the sv_cat* functions, which act like sv_set* but concatenate the value given to the
current content of the string instead of replacing it. The sv_setsv function copies the
value of an SV to another. The SV created in the previous example can be assigned to a
global variable like this:

/* Gets the SV from the global $point */

SV* pnt = get_sv("point", TRUE);

/* Assigns the value of v to $point */

sv_setsv(pnt, v);

The type of data stored in SVs is checked with the SvIOK macro for integers, SvNOK for
�oating-point values, and SvPOK for strings. These functions return success if the scalar is

34 CHAPTER 3. SCRIPTING LANGUAGE APIS

convertible to the speci�ed type � the variants SvIOKp, SvNOKp, SvPOKp verify if the value
stored in the SV is actually of that type.

Arrays and hashes are created with newAV and newHV. Arrays can be populated with a
C array of SV pointers through av_make. Operations such as av_fetch, av_pop, hv_fetch
and hv_exists operate on elements of these structures. In av_fetch and hv_fetch, the
return type is SV**, to di�erentiate between returning an existing element which points to
NULL from returning �element not found�. In the following example, we create a Perl array
containing the 10 �rst elements of the Fibonacci series:

/* Create a new array */

AV* a = newAV();

/* Store two values, 0 and 1, at its first positions */

av_push(a, newSViv(0));

av_push(a, newSViv(1));

for (int i = 2; i < 10; i++) {

/* Obviously, it would be more efficient to store these values in

temporary values in C, but we'll obtain the last two values

back from the Perl array for illustration purposes: */

SV** next_to_last_sv = av_fetch(a, i-2, FALSE);

SV** last_sv = av_fetch(a, i-1, FALSE);

/* Obtain the integers stored in those SVs */

int next_to_last = SvIV(*next_to_last_sv);

int last = SvIV(*last_sv);

/* Create a new SV and insert it in the end of the array */

av_push(a, newSViv(next_to_last + last));

}

Once this AV is created, however, there is no way to associate it to a Perl variable. Its
contents must be copied item by item. To make it accessible from Perl, we should have
created it with get_av, and not newAV. AVs that are not associated to variables are useful,
however, when passing arguments in function calls and as return values.

Some functions for hash manipulation expose the key/value pairs as HE pointers. The
HeSVKEY and HeVAL macros extract the key and value from an HE. The following C function
prints the elements of a Perl hash:

void print_hash(HV* hash) {

HE* item;

/* Each HV keeps its own internal iteration control */

hv_iterinit(hash);

/* Get the next key/value pair in the iteration */

while ((item = hv_iternext(hash))) {

/* Get the string representation of scalars

representing key and value of the item */

char* key = SvPV_nolen(HeSVKEY(item));

char* value = SvPV_nolen(HeVAL(item));

printf("%s => %s\n", key, value);

}

}

3.1. DATA TRANSFER 35

Special care should be taken when using the values undef, true and false in arrays and
hashes, even though Perl exposes these constants in its C API (PL_sv_undef, PL_sv_true,
PL_sv_false). The constant PL_sv_undef is used internally in the implementation of AVs
and HVs, and the update of values in HVs happens in-place, which generates problems when
updating elements containing these constants. The documentation recommends generating
copies of these values when using them in AV and HV structures [29].

Perl references are created with newRV_inc and newRV_noinc, which receive an SV,
AV or HV pointer as a parameter (these two functions di�er in how they handle reference
counted, which will be discussed in Section 3.2.5). The value pointed by a reference is
obtained with SvRV. The return value of this macro must be converted through a cast to
the appropriate type (IV, PV, AV, etc.), which can be checked with SvTYPE.

Many functions of the API have argument or return types declared as SV when in fact
they accept AVs or HVs; this is analogous to the concept of Perl contexts, in which the same
value can be treated as a list (array or hash) or scalar depending on the expression where
it is inserted [25]. In Perl code, the context where a function is executed can be inspected
with wantarray. In C, the context can be checked with the GIMME_V macro, which returns
G_VOID, G_SCALAR or G_ARRAY.

3.1.6 Comparison

The basic set of functions for manipulating data in the �ve languages presented here is
similar: all of them provide functions for converting values from the language to basic C
types and vice versa. All of them also o�er functions for manipulating their fundamental
structured types (tables in Lua, arrays in Java, arrays and hashes in Ruby and Perl, lists
and dictionaries in Python). Python, in particular, de�nes an extensive function API for
operations on its built-in classes; most of these functions could be performed using the
generic API for method invocation, but they are o�ered directly in C as a convenience.

Lua stands out for having, with its stack model, the simplest and most orthogonal
data manipulation API among the ones studied. However, the resulting code often loses in
readability when the stack indices are not obvious. It is commonplace to see C code using
the Lua API commented line by line, to save the programmer from having to simulate
mentally the stack operations while reading the program.

In Java, static typing reduces greatly the need of explicit data conversion in C code.
On the other hand, treatment of multi-threading complicates the access of types such as
strings and arrays.

A negative point in the Ruby API is the exposure of implementation details of the
struct �elds that describe its fundamental VALUE type. This restricts the �exibility of the
language implementation and fosters unsafe programming practices. Perl also exposes a
good deal of its internal structures; not as directly as Ruby, but through macros. These
macros, however, assume the adherence to usage protocols so strict that in practice they
also largely limit the possibilities of changes in the implementation (an example of this is
the sequence for function calls, which will be presented in Section 3.3.5).

The creation of data containing C structures stored by the scripting language is an easy

36 CHAPTER 3. SCRIPTING LANGUAGE APIS

task in Perl, Ruby and Lua: Perl allows one to create SVs containing arbitrary memory
blocks for use in C; Ruby o�ers the Data_Wrap_Struct macro which generates a Ruby
object which encapsulates a C structure; Lua de�nes a basic type in the language especially
for this end. In Python, on its turn, the process is not as straightforward. Creating a
Python class from C involves declaring parts of it statically and other parts dynamically,
being usually necessary to de�ne three di�erent C structures. In Java, it is not possible to
create new types from C, one can only load classes.

Another common task when interacting with C is the need to store pointers in the data
space of the scripting language. Python, Lua and Perl o�er features to do this directly:
creating a PyCObject in Python; a light userdata in Lua; or storing a pointer in the data
area of an SV in Perl. In Java and Ruby, the alternative is to convert pointers and store
them as numbers. In fact, this happens internally in the implementation of Ruby, and the
portability limitations of this approach are made evident by the fact that the compilation
of Ruby fails if sizeof(void*) != sizeof(long).

Finally, an aspect that deserves being mentioned is the concern on not polluting the C
namespace. Python, Java and Lua de�ne all its functions and C types with pre�xes that
aim to avoid con�icts with names de�ned by the application. Perl and Ruby de�ne names
in a disorganized fashion, which occasionally causes problems9. Perl has options to disable
a series of macros and force a common pre�x in its functions, but this feature is incomplete
and using it hampers the functionality of its headers10.

3.2 Garbage collection

From the moment when C code gains access to references to data stored in the stor-
age space of another language, be them pointers or identi�ers, the programmer must take
into consideration the di�erences between the memory management models involved, since
code executed in the other language may free the data. For example, the C program may
deallocate an object referenced by data in the scripting language, or the scripting language
may remove an element from a structure causing it to be collected. In principle, this task
of maintaining consistency between these two environments is no di�erent from manual
memory management normally taken care by C programmers. However, the interaction
with some languages adds an important factor of complexity: the garbage collection mech-
anisms perform deallocation of data from memory in an implicit manner. The fundamental
principle of garbage collection dictates that an object is not collected in case there is some
element (variable, data structure) pointing to it. However, the same is not valid for the
C environment: the presence of a pointer pointing to an object does not guarantee that
it will not be collected, given that the garbage collector does not manage pointers from C

9For example, con�icts of this kind happened in the Ruby bindings of the Subversion revision control
system in Win32 platforms (http://svn.haxx.se/dev/archive-2005-04/1789.shtml).

10In the case study presented in Chapter 4, when using the Perl API we tried to restrict ourselves to the
Perl_-pre�xed versions of the API functions, but many necessary macros are only available in versions
with no pre�x.

3.2. GARBAGE COLLECTION 37

code.
It is necessary, then, to indicate from C code that the data remain accessible from it and

must not be collected. In a complementary way, when transferring the control of C objects
to the domain of the other language � for example, when storing them in a data structure
of the other language � it is necessary to indicate to the language how to deallocate the
memory of the structure when the garbage collector detects that it is no longer in use.
The way how the API will provide this functionality depends not only of the design of the
C API, but also of the garbage collection mode employed by the implementation of the
language.

3.2.1 Python

The Python virtual machine features a garbage collector based on reference counting.
As the Python API returns to C code pointers to PyObjects, the programmer must have
the care of ensuring that they will remain valid. For such, it is necessary to increment and
decrement the pointed object's reference count according to how one wants to control the
validity of the pointers in C code.

In general, once the C code needs to retain a PyObject*, it should use the Py_INCREF
macro to increment its reference count and so prevent it from being collected. Once the
value is no longer needed, the reference count should be accordingly decremented with
Py_DECREF. Python works with the concept of �reference ownership� to de�ne when the
programmer needs to increment or decrement the counter of references returned by API
functions. Most API functions that return pointers to PyObjects transfer references to
the caller; the reference becomes the caller's responsibility � it can either pass it on or
it will have to decrement it with Py_DECREF when it is not needed anymore (C code can
store owned references in its data structures; they will remain valid even after the return
of the function, until they are explicitly decremented). Other functions lend references;
the code that borrows the reference does not need to decrement it after using it, but the
validity of the object is attached to the validity of the reference in the object that returned
it to C. For example, PyList_GetItem lends a reference to an element of the list. The
pointer returned will remain valid while the the item remains stored in the list. It is
possible to obtain �ownership� of a borrowed reference by incrementing the object count
with Py_INCREF: the validity of the pointer becomes independent from the container object
that returned it, but the C code becomes responsible for decrementing the reference later
with Py_DECREF.

For object references passed from C back to Python, there are two cases in the API
where functions �steal� references, that is, in which the reference no longer belongs to the
calling C function: PyList_SetItem and PyTuple_SetItem. The given reference, which
belonged to the caller, becomes owned by the list or tuple. In the context of the caller, it is
now a borrowed reference, which does not have to be decremented anymore. The point of
this is to allow nested function calls where, for example, the argument for PyList_SetItem
is a call that generates a new object to be stored in the list. So, this avoids having to store
a pointer to the object only to decrement its reference later.

38 CHAPTER 3. SCRIPTING LANGUAGE APIS

void bug(PyObject* list) {

PyObject* item = PyList_GetItem(list, 0);

if (!item) return;

PyList_SetItem(list, 1, PyInt_FromLong(0L));

PyObject_Print(item, stdout, 0); /* BUG! */

}

(a) Possibly invalid access in PyObject_Print

void no_bug(PyObject* list) {

PyObject* item = PyList_GetItem(list, 0);

if (!item) return;

Py_INCREF(item);

PyList_SetItem(list, 1, PyInt_FromLong(0L));

PyObject_Print(item, stdout, 0);

Py_DECREF(item);

}

(b) item is de�nitely valid in PyObject_Print

Figure 3.3: Possibly invalid access in a reference to a PyObject in C code

The interaction with the reference counter can be very subtle. The example in Fig-
ure 3.3, extracted from the Python documentation, demonstrates that a reference can be
invalidated by apparently unrelated code11. At �rst sight, the insertion of an element in
list[1] seems not to a�ect the item reference, which corresponds to list[0]. However,
the insertion of list[1] may have removed from the list an element that was in this posi-
tion. In case the list was the last valid reference to the element, it might be collected. The
collection of the object can invoke its �nalizer method __del__, that can run arbitrary
Python code. If this code removes the element from position 0 of list and this triggers its
collection, item becomes invalid, because PyList_GetItem returns a borrowed reference.

When implementing C functions that return references to PyObjects, the same care of
de�ning the lifetime policy of the reference should be taken. To return a new reference to
be owned by the caller, it may be necessary to increment the object's count. This manifests
itself, for example, in the correct way for a C function to return the value None, which
involves calling Py_INCREF(Py_none)12. Even Python objects representing numbers need
to have their reference count controlled by the C programmer.

It is possible to de�ne a deallocation function in the tp_dealloc �eld of the PyTypeObject
structure so that C code can perform �nalization operations over data stored in a Python
type de�ned in C. This function is normally responsible for freeing resources allocated
through C code (open �les, pointers to memory areas inaccessible from Python, etc.) and

11In fact, the documentation informs that older versions of Python contained variants of this bug in
some of its modules.

12This pattern is so common that the sequence Py_INCREF(Py_none); return Py_none; was encapsu-
lated in the Py_RETURN_NONE macro.

3.2. GARBAGE COLLECTION 39

decrementing references to other Python objects maintained by the object.
When deallocating data structures such as lists it is possible to trigger an arbitrar-

ily large chain of deallocations, as each element causes the deallocation of the next el-
ement of the structure. This launches the deallocation function recursively and could
easily cause a stack over�ow in C. To work around this problem, Python includes a pair
of macros, Py_TRASHCAN_SAFE_BEGIN and Py_TRASHCAN_SAFE_END, that control the ac-
cepted number of recursion levels. At each execution of Py_TRASHCAN_SAFE_BEGIN an
internal counter is incremented. While this counter does not reach the limit value de-
�ned in the PyTrash_UNWIND_LEVEL constant (50 by default), the function runs normally.
When the limit is reached, Py_TRASHCAN_SAFE_BEGIN stores the object in an internal list
and jumps straight to Py_TRASHCAN_SAFE_END, avoiding the deallocation the object and
another recursion. At the end of each level of the recursion, Py_TRASHCAN_SAFE_END decre-
ments the counter. When the counter reaches zero, Py_TRASHCAN_SAFE_END launches again
tp_dealloc on the elements stored in the internal list, restarting then the recursion on the
structure. So, a chain of n deallocations is broken into n/PyTrash_UNWIND_LEVEL chains,
none of them exceeding PyTrash_UNWIND_LEVEL levels of recursion in the C stack. The im-
plementation of the main structured types of Python, such as lists, tuples and dictionaries,
make use of this mechanism.

Garbage collection using reference counts brings with it concerns about circular ref-
erences: a chain of objects maintaining references to each other keeps the count of each
of its elements greater than zero, even if they are not reachable from any other object.
Python includes a cycle detector, but special measures must be taken to ensure that types
implemented in C behave correctly if they can generate cycles. One must implement a
function to traverse references contained in the object and a function to decrement their
reference counts. These functions must be registered in the tp_traverse and tp_clear

�elds of the PyTypeObject structure. The tp_clear function has to take the precaution
of clearing the value of its PyObject* �elds to NULL before decrementing each reference,
since the decrement operation may start the deallocation of the object and launch a call to
tp_traverse which, due to the cycle, may return to the previous object. The type must be,
then, identi�ed with the Py_TPFLAGS_HAVE_GC �ag in the tp_flags �eld of PyTypeObject.

Besides, the implementation of Python objects that support cyclic collection in C im-
plies in yet more care. Objects must be allocated with PyObject_GC_New or PyObject_-
GC_NewVar instead of the usual functions PyObject_New and PyObject_NewVar. During
the construction of the object, after the �elds to be visited by tp_traverse are �lled, it
is still necessary to call a noti�cation function, PyObject_GC_Track, and during deallo-
cation, before invalidating the object's �elds, to call PyObject_GC_UnTrack. For objects
that need the �trashcan� mechanism to avoid stack over�ow, it is also necessary to take
the precaution of unmarking the object with PyObject_GC_UnTrack before entering the
Py_TRASHCAN_SAFE_BEGIN/END block.

In spite of o�ering a cycle detection mechanism, Python is unable to collect cycles whose
objects contain �nalizers implemented in Python itself (__del__ methods); the only way
to access those objects is then through the garbage list in the gc module. This module
(accessible to C through Python function calls using the C API) o�ers an interface to

40 CHAPTER 3. SCRIPTING LANGUAGE APIS

the garbage collector, including enable and disable functions, to activate and deactivate
the garbage collector; collect, to run a collection; get_objects, which returns a list
containing all objects controlled by the collector (except the list itself); get_referrers
and get_referents, which return the list of object that refer or are referred by a given
object � these lists are obtained using the tp_traverse function, which may not point to
all objects actually reachable, or may still return objects in an invalid state (such as objects
in cycles that were not yet collected or objects still not fully constructed) and therefore
should be used only for debugging purposes.

3.2.2 Ruby

Ruby uses a mark-and-sweep garbage collector [48]. This technique avoids the problem
of cyclic references faced by Python; having valid objects correctly indicated as reachable
is su�cient.

Objects that are reachable from the Ruby data space � assigned to a Ruby global
variable or inserted in some data structure reachable in Ruby � will not be subjected to
garbage collection. In addition, we have objects returned by Ruby to the C space, since
many API functions return VALUEs. The documentation warns that, to store Ruby objects
in C, either in global variables or in data structures, it is necessary to notify the virtual
machine that the VALUE must not be collected using the rb_global_variable function [40]
(although not mentioned in the documentation, it is possible to unmark a global value with
rb_gc_unregister_address).

Objects in the local scope of a C function, however, do not need to be noti�ed. The way
how Ruby ensures the validity of local VALUEs is remarkably peculiar: when performing the
mark phase, the garbage collector scans the C stack looking for values that look like VALUE
addresses, that is, numeric sequences that correspond to valid VALUE addresses. These
addresses can be identi�ed because objects are always allocated within heaps maintained
by the Ruby interpreter. Each VALUE found in the stack is then marked. This ensures
that any VALUE locally accessible by C code becomes invalidated, but may generate �false
positives� stopping data that could be collected from being so.

In spite of programmer convenience, such approach is extremely non-portable. The
implementation of the garbage collector in Ruby 1.8.2 has #ifdefs for IA-64, DJGPP,
FreeBSD, Win32, Cygwin, GCC, Atari ST, AIX, MS-DOS, Human68k, Windows CE,
SPARC and Motorola 68000. Besides, the collector forces the discharge of registers to the
stack using setjmp, to prevent variables of the VALUE type that may have been optimized
into registers by the compiler from being missed.

As we have seen in Section 3.1.2, Ruby objects created with Data_Wrap_Struct contain
C structs, and those may contain references to Ruby VALUEs. The encapsulated struct,
however, is opaque to the Ruby universe. So, to ensure that these VALUEs are marked as
reachable during garbage collection this has to be done through C code. Data_Wrap_Struct
accepts, beside the struct to be wrapped, pointers to a mark function and to a deallocation
function. When the garbage collector visits the object in the mark phase, it invokes the
registered function, which must call rb_gc_mark on each VALUE stored in the object's

3.2. GARBAGE COLLECTION 41

struct, informing thus that these objects are reachable. When an object wrapped with
Data_*_Struct is considered unreachable, its deallocation function is called. On structures
that do not store other VALUEs, the mark function can be set to NULL and the deallocation
function to free.

Ruby has a GC module featuring functions to turn the collector on and o� (GC.enable
and GC.disable), as well as to launch a collection immediately (GC.start). There are
equivalent functions in the C API: rb_gc_enable, rb_gc_disable e rb_gc_start. The
C API includes also a function that inserts an object immediately in the list of objects to
be recycled by Ruby's memory allocator, rb_gc_force_recycle. This function should be
used with caution, since if there are still any references pointing to the recycled object, they
will point to the new object when the memory area is reclaimed by the Ruby allocator.

Ruby also o�ers as a convenience to the C programmer some wrappers to the malloc
and realloc functions that interact with the garbage collector, forcing its execution during
large allocations13 or in low-memory situations.

3.2.3 Java

Like in Python and Ruby, the Java API returns references to objects from the virtual
machine that can be stored in C variables. The JNI de�nes three types of references, local,
global and weak global references, to aid in controlling their lifetime and their interaction
with the garbage collector.

Most functions of the JNI return local references, which are valid until the return of
the C function that has obtained them. It is not necessary to deallocate a local reference
explicitly: during the execution of a C function, the JVM maintains a list of local references
passed to the function and frees them all when control returns to the virtual machine.
This way, in general, the programmer does not need to worry about garbage collection
when manipulating values returned during a function. On the other hand, in code that
may use a large number of local references it is more e�cient to free local references
explicitly, using DeleteLocalRef. In Java version 1.2, functions were added to manage
local references in blocks. PushLocalFrame and PopLocalFrame allow one to create nested
scopes of local references, which are freed all at once. PushLocalFrame receives also an
argument indicating a number of slots to be pre-allocated, as an optimization. This value
can also be con�gured with EnsureLocalCapacity.

Global references are generated from local references using NewGlobalRef. References
of this kind remain valid until they are explicitly deallocated with DeleteGlobalRef. A
global reference stops the object from being collected; it can therefore be used to store
Java objects in C space beyond the duration of a function, for example, in global or static
variables.

Figure 3.4 shows an example of the kind of reference management that is needed when
a loop creates temporary references for an arbitrary number of objects.

13The de�nition of �large� is adjusted dynamically, based on the execution of the collector and previously
performed allocations.

42 CHAPTER 3. SCRIPTING LANGUAGE APIS

In the example, the Java_Example_concatArray function (equivalent, therefore, to
the concatArray method from class Example) converts the elements of an array to strings
using Object.toString and concatenates them using String.concat. Notice that, as
the number of iterations of the loop depends on the size of the given array, one should
prevent the number of references from increasing on each iteration. For that, the options
would be either to use Push/PopLocalFrame, or to destroy references one by one with
DeleteLocalRef. If we used Push/PopLocalFrame in the example, we would have to
keep the temporary string holding the concatenation in a global reference. Further, this
reference would have to be destroyed and recreated on each iteration, since strings are
immutable in Java. As the number of locals is small, it is more convenient in this case to
control them explicitly with DeleteLocalRef than resorting to global references.

PopLocalFrame allows, through an additional argument, transferring a local reference
from the set that is being popped to the external scope of local reference, creating this
way a new reference. For the example of Figure 3.4, this would still not avoid the need of
freeing references explicitly on each iteration of the loop, since each PopLocalFrame would
create a new local reference.

Since Java 1.2, the JNI includes weak global references, with the goal of o�ering a
simpli�ed version of Java's weak references (java.lang.ref) � an object pointed only by
weak global references can be collected. Originally, the API de�ned the IsSameObject

function as a way to check the validity of a weak reference, but evidently this method is
insu�cient: since Java is multi-threaded, the garbage collector may invalidate the reference
between the test and the following instruction in C code. The revised documentation warns
about this limitation and recommends the use of global references, as well as alerting on
unde�ned behaviors in the relationship between weak global references in C and Java's
own weak reference types [37].

More issues arise from the combination of Java's multi-threaded model with the ex-
posure of references of virtual machine objects to C code. To reduce the volume of
data copying between Java and C, the JNI o�ers some functions that return and re-
lease pointers to the internal representation of strings and arrays of primitive types:
Get/ReleaseStringCritical and Get/ReleasePrimitiveArrayCritical. The use of
these functions, however, has important restrictions. The API speci�es that, once a pointer
is obtained through these functions, the C code must not call other JNI functions or per-
form calls that may block the current thread and make it wait for another Java thread,
under risk of a deadlock. It is recommended that memory blocks held using these functions
are not retained for a long time, since one of the possible techniques fro implementing this
�critical section� consists in disabling the garbage collector. It is also important to note
that local references and the pointer to the JNI environment passed to native functions are
valid only in the thread where they were created; global references can be shared among
threads.

Besides the weak reference mechanism provided by the java.lang.ref package, the
only way provided by Java to interact in a more direct way with the garbage collector
is through the System.gc() call, which asks the virtual machine to launch the collection
thread as soon as possible so that it deallocate unreachable objects. There is no equivalent

3.2. GARBAGE COLLECTION 43

static jmethodID concat = NULL, toString = NULL;

/* Caching jmethodIDs in C code is a common technique.

It's worth mentioning that jmethodIDs are not Java objects,

and are therefore not subjected to garbage collection. */

void cache_ids(JNIEnv* J) {

jclass cls = (*J)->FindClass(J, "java/lang/String");

concat = (*J)->GetMethodID(J, cls, "concat",

"(Ljava/lang/String;)Ljava/lang/String;");

cls = (*J)->FindClass(J, "java/lang/Object");

toString = (*J)->GetMethodID(J, cls, "toString",

"()Ljava/lang/String;");

}

JNIEXPORT jstring JNICALL

Java_Example_concatArray(JNIEnv* J, jobject this, jobjectArray a) {

if (!concat) cache_ids(J);

jstring s = (*J)->NewString(J, NULL, 0); /* s = "" */

int len = (*J)->GetArrayLength(J, a); /* len = a.length */

for (int i = 0; i < len; i++) {

jobject o = (*J)->GetObjectArrayElement(J, a, i); /* o = a[i] */

jstring os = (*J)->CallObjectMethod(J, o, toString); /* os = o.toString() */

jstring s2 = (*J)->CallObjectMethod(J, s, concat, os); /* s2 = s.concat(os) */

(*J)->DeleteLocalRef(J, s);

(*J)->DeleteLocalRef(J, o);

(*J)->DeleteLocalRef(J, os);

s = s2;

}

return s;

}

Figure 3.4: Routine for concatenating elements of an array represented as strings.

C function in the JNI, but this method can be invoked from C with CallStaticVoidMethod.

3.2.4 Lua

The interaction of native C code with the Lua garbage collector is greatly simpli�ed
by the fact that the Lua API does not return explicit references to Lua objects to the C
space. Operations on Lua objects are always speci�ed through indices of the virtual stack.
This way, the virtual machine retains all control over which objects are accessible from C
at any given moment.

Although pointers to objects are not manipulated in the API, some functions re-
turn pointers to structures managed by Lua: lua_newuserdata, lua_to*string and
lua_touserdata. The validity of pointers returned by these functions is dependent on
the lifetime of the object they correspond to; for strings in particular, a returned pointer is
only decidedly valid as long as the string is in the stack. Lua o�ers still the lua_topointer
function, which returns pointers to some kinds of objects (userdata, tables, threads and

44 CHAPTER 3. SCRIPTING LANGUAGE APIS

functions), but only with the intention of providing debugging information, as it is not
possible to convert such pointers back into Lua values.

The virtual stack is emptied when the C function returns control to the Lua virtual
machine. This way, it is not possible to retain pointers returned by Lua for later use in
global variables or C structures. Alternatively, the API o�ers a mechanism for storing Lua
values in a location that is known to C code and that cannot be altered by Lua code: the
registry. The registry is a table made available through the Lua API for the storage of
Lua values from C; this table is not normally accessible from Lua. Since the table that
implements the registry is part of the root set of the garbage collector, the inclusion of an
object in this table prevents it from being collected, keeping it in the registry until it is
explicitly removed through C code.

Using the registry, a possible way to describe data from the Lua space in C data struc-
tures is to store data in the registry and store the used indices in the C structure. Lua's aux-
iliary library encapsulates such idiom through two functions, luaL_ref and luaL_unref.
The luaL_ref function associates the given Lua value to an integer numeric key in the
registry, and returns this number. This value can then be seen as a high-level handle to
the object: C code can store it in variables and structures and use it to refer to the object
through its registry �eld. The luaL_unref function removes the Lua value from the reg-
istry and frees the index for reuse. To ensure that this mechanism works properly, integer
keys should not be used directly be the programmer to store data in the registry.

The API allows associating a deallocation function, __gc, to the metatable of full
userdata objects. When present, this function will be typically implemented in C, per-
forming resource �nalization. For example, the __gc metamethod of objects returned by
the io.open Lua function is a C function that closes the corresponding �le descriptor using
the fclose function.

In principle, the fact that its possible to obtain and modify the metatable of userdata
through Lua code may seem problematic, as one could replace its �nalizer in __gc. How-
ever, collection functions implemented in C typically validate received userdata checking
its �type�, identi�ed through its metatable. So, even if Lua code manipulates the table,
a collection function implemented in C which uses luaL_checkudata will not be made to
operate on userdata of incorrect type. To stop Lua code from modifying the collection
function of a userdata object, one can assign some value, such as false, to the __metatable
�eld of the metatable; this will be returned in place of the metatable, making the metatable
itself unaccessible.

Another resource related to memory management provided by Lua is the possibility
of con�guring, at runtime, the allocation function to be used by the virtual machine. In
the creation of a new Lua state, an allocation function is passed as a its �rst argument.
This function must o�er functionality like that from the C functions free and realloc,
depending if the given block size is equal or greater than zero.

Lua o�ers an interface to its garbage collector through two functions: lua_gc in C
and collectgarbage in Lua. The collector implements incremental mark-and-sweep and
allows the programmer to con�gure parameters related to collection intervals, as well as
enable, disable, launch full cycles and executing collection steps.

3.2. GARBAGE COLLECTION 45

3.2.5 Perl

Like Python, Perl performs garbage collection based on reference counting. The API
provides functions for explicit control of reference counts: SvREFCNT_inc e SvREFCNT_dec
and a getter, SvREFCNT. Another way to modify the reference count of a value is to assign it
to a Perl reference with newRV_inc. The count of the referenced value will be incremented,
keeping it valid � unless it has its count altered explicitly � as long as it is referenced
by the RV. It is important to note, however, that API functions that create values, such
as newSViv, initialize their reference counts with 1. This has the e�ect that if a value is
created in a C function, stored in an RV with newRV_inc and this reference is returned
to Perl, the value will never be collected, because its counter will not reach 0 when the
reference is destroyed. The correct form, then, is to use newRV_noinc for RVs containing
newly-created values and newRV_inc when an RV needs to retain an already existing value.

Initializing reference counts with 1 ensures that values created will remain valid during
the execution of a C function without storing the value in Perl space. These values can
also be stored in C global variables and data structures and will remain valid until their
reference count is decremented. For values with a lifetime restricted to a single function, the
Perl API de�nes the concept of �mortal� variables as a way of deallocating all temporary
values of a function at once. An SV, AV or HV can be created with sv_newmortal or,
more commonly, converted to a mortal with sv_2mortal. In practice, marking a value
as mortal corresponds to indicating that it should have its reference count decremented
by the FREETMPS macro by the end of a function, as we will see in Section 3.3.5. Some
functions of the API return mortal values: for example, hv_delete removes an element of
a hash and, unless the G_DISCARD is passed, returns the removed element as a mortal SV.

The Perl API does not provide facilities for interfacing with the garbage collector,
but features some debugging support functions that report information about the state of
garbage collection. The sv_report_used function displays the contents of every SV stored
in the interpreter. The Devel::Peek module allows examining from Perl the content of
values (reference counts, �ags, etc.) � from C, this information is directly available, since
their structures are not opaque.

3.2.6 Comparison

Garbage collection aims to isolate, as much as possible, the programmer from memory
management. This way, ideally an API should also be as independent as possible from the
garbage collection algorithm used in the implementation of the virtual machine. Perl and
Python perform garbage collection based on reference counting, and this shows through
in the reference increment and decrement operations frequently needed during the use of
their APIs.

Ruby uses a mark-and-sweep garbage collector. Its API manages to abstract this fact
well for manipulation of native Ruby objects, but the implementation of the collector is
evident in the creation of Ruby types in C, where we need to declare a mark function when
there are C structures that store reference to Ruby objects. The Lua API goes further

46 CHAPTER 3. SCRIPTING LANGUAGE APIS

when isolating itself from the implementation of the garbage collector: the only point of
the API where the use of an incremental garbage collection is apparent is in the routine
for direct interaction with the collector, lua_gc, where its parameters can be con�gured.

Of the �ve languages studied, the only whose API abstracts entirely the implementation
of the garbage collector is Java. The only interfacing operation provided by the language,
System.gc(), does not receive any arguments and does not specify how or when the
collection should be done14. Indeed, the various available implementations of the JVM use
di�erent algorithms for garbage collection.

For manipulating data through the API, Lua and Ruby are the languages that demand
the least concerns from the programmer about managing references. Ruby keeps control of
references returned to C functions scanning the C stack during garbage collection, detecting
the presence of references stored in local variables. Lua avoids the problem altogether, by
keeping its objects in the virtual stack and not returning references to C code.

The issue of references stored in local variables is handled by Perl and Java in a sim-
ilar way, by de�ning two types of references, global and local (local references are called
�mortal variables� in Perl). Local references have implicit management (save a few cases,
as discussed in Section 3.2.3). API functions in Java return local references by default,
which can be converted to global ones with NewGlobalRef. In Perl, the opposite happens,
and global references can be converted to local ones with sv_2mortal. Java's approach is
more interesting, as normally more locally-scoped than globally-scoped variables are used.
Values stored globally always need to have some for of explicit management to them, even
in Ruby and Lua, through rb_global_variable and luaL_ref/luaL_unref.

3.3 Calling functions from C

The API must provide a form of invoking from C functions to be executed by the
scripting language. This involves passing data between these two �spaces�, as seen in
Section 3.1 and the implications that this brings about the objects' lifetime, discussed in
Section 3.2. Because of the static typing of C, it is not possible to use a transparent syntax
for calling functions registered at runtime. It is therefore necessary for the API to de�ne
functions for performing calls to the scripting language.

In this section, we will discuss the facilities provided by each API for invoking functions
to be executed by its virtual machine. The main issues involved are how to reference the
function to be called, how to pass arguments to it and how to obtain the return value,
including forms of noti�cation in case of errors. For illustration purposes, for each language
we will present an example of a simple function call. Assume that in the space of each
scripting language a test function was de�ned, which receives an integer and a string as
arguments and returns an integer as a result. For brevity, error handling will be omitted
in the examples.

14The documentation is purposely vague, stating only that this method �suggests that the Java Virtual
Machine expend e�ort toward recycling unused objects� .

3.3. CALLING FUNCTIONS FROM C 47

3.3.1 Python

When calling a Python function from C, one should initially obtain a pointer to the
PyObject corresponding to the function, as seen in Section 3.1.1. Besides functions im-
plemented in Python and C functions registered through the Python API, any data type
that implements the __call__ method (or declares a function in the tp_call �eld of its
PyTypeObject structure) can be called as a function.

The Python API o�ers several functions for performing calls from C. The most general
function, PyObject_Call, receives as arguments the object to be called, a Python tuple
containing the arguments to be passed and optionally a dictionary of keyword arguments.
As a convenience, other functions allow passing arguments in other ways. For example,
PyObject_CallFunction encapsulates the call to Py_BuildValue (seen in Section 3.1.1),
accepting directly the format string and the value to be converted. PyObject_Call-

FunctionObjArgs is a vararg function that accepts a sequence of pointers to PyObjects.
There are also many convenience functions for method invocation. The PyObject_Call-

Method is a variant of PyObject_CallFunction that receives as arguments a PyObject and
a C string containing the method name. So, for example, both forms below are equivalent
to the Python statement ret = some_string.split(" "):

/* "s" indicates that the next parameter is a string */

PyObject* ret = PyObject_CallMethod(some_string, "split", "s", " ");

PyObject* split = PyObject_GetAttrString(some_string, "split");

PyObject* ret = PyObject_CallFunction(split, "s", " ");

It is interesting to note that when a method is called as a function, the self argument
is not passed explicitly.

The return value in all invocation functions is a PyObject pointer. As it happens in
Python code, when Python functions return multiple values, they are encapsulated in a
tuple. For functions that do not return a value, C functions must return Py_None. In case
of errors in the call, these functions return NULL. The occurrence of exceptions can then be
veri�ed with the PyErr_Occurred function.

A typical way of calling a Python function called test, including retrieval of the function
and conversion of input and output values between Python and C, is shown below:

PyObject* globals = PyModule_GetDict(PyImport_AddModule("__main__"));

PyObject* test = PyDict_GetItemString(globals, "test");

/* "si" indicates string and integer arguments */

PyObject* obj_result = PyObject_CallFunction(test, "si", "foo", 2);

/* Converts the value to C */

long result = PyInt_AsLong(obj_result);

/* Frees the temporary PyObject that was returned */

Py_DECREF(obj_result);

A global function is obtain through the dictionary in the __main__ module. The con-
version of input data from C to Python is made through a format string received by

48 CHAPTER 3. SCRIPTING LANGUAGE APIS

PyObject_CallFunction. This call is equivalent to obj_result = test("foo", 2) in
Python. The output value is returned as a new reference to a Python object and, as such,
needs to have its reference count decremented after its use. The PyImport_AddModule,
PyModule_GetDict and PyDict_GetItemString return borrowed references, therefore the
reference count of PyObjects returned by them do not need to be decremented after their
use. However, after calling the Python function, there is no guarantee that the globals

and test pointers still point to valid objects � we would have to have incremented their
reference counts if we wanted to use them again.

3.3.2 Ruby

Since methods are not �rst-class values in Ruby, they are not represented as VALUEs
in their C API. For calling Ruby methods in C, the API o�ers the rb_funcall function
and some variations. In common, all of them receive as an argument the VALUE indicating
to the object the method refers to, an ID referring to the interned string containing the
method name and an integer informing the number of arguments.

Like in Python, the API functions for method invocation di�er in how arguments
are passed. For example, rb_funcall receives arguments as VALUEs passed as C varargs;
rb_funcall2 receives a C array of VALUEs; rb_apply receives a VALUE that must be a Ruby
array containing arguments. All of them return a VALUE as an argument. Like in Ruby
code, multiple return values are represented as a Ruby array.

All function call routines from the API refer to methods, expecting thus an object on
which the method should be applied. Global functions are de�ned in Ruby as methods of
the Kernel module, which is included by the class Object and are, therefore, accessible
from every object, including nil. This way, one can invoke global functions passing the C
constant Qnil as the method's target object.

Below, we present the typical way a Ruby global function test is called from C, again
including conversion of input and output values between C and the interpreter.

ID test = rb_intern("test");

VALUE val_result = rb_funcall(Qnil, test, 2, rb_str_new2("foo"), INT2NUM(2));

long result = NUM2LONG(val_result);

Unlike it happens in Python, it is not necessary to obtain a reference to the function,
su�cing to pass its name as an ID and the object it refers to (in this case, Qnil, indi-
cating a global function). Conversion of input data from C to Ruby is done through the
rb_str_new2 function and the INT2NUM macro, which return VALUEs.

As discussed in Section 3.2.2, the control of validity of VALUEs is done implicitly. So,
we can call functions that create VALUEs directly when passing parameters to rb_funcall.
Actually, all three lines above could have been condensed, passing rb_funcall as a pa-
rameter to NUM2LONG and rb_intern as the second argument of rb_funcall; they were
separated here for greater readability.

A data type that is treated in a quite irregular way in Ruby is that from code blocks.
Ruby features special syntax for declaring blocks: they can only be de�ned as the last

3.3. CALLING FUNCTIONS FROM C 49

argument of a method call. This way, they are not �rst-class values and cannot be, for
example, declared in a variable assignment. They can, however, be promoted to �rst-class
values, as objects of the Proc class. This can be done in two ways: explicitly, passing a block
to the Proc.new method, or implicitly, when a block is passed to a method that declares
a �nal formal argument preceded by &. This variable will contain the block converted to
a Proc. When calling functions that expect blocks, & converts a Proc to a block. Proc

objects can be manipulated through the C API as any other Ruby object, but there is no
match in the C API to the functionality of the & operator in function calls.

The special status of code blocks complicates their use from C code, and in particular
the invocation of methods that expect them as a parameter. Say we want to invoke the
following Ruby method from C:

def a_ruby_function()

print("a_ruby_function will invoke the block.\n")

yield

print("a_ruby_function is done.\n")

return 42

end

This function expects a code block to be passed to it, so it can be invoked by the yield
command. Since we will invoke the function from C, we also want to pass C code as a
block, represented by the following function:

VALUE a_C_block() {

fprintf(stderr, "a_C_block is running.\n");

}

The conversion of Proc objects to blocks performed by the & operator in Ruby has
no equivalent in the C API. Therefore, rb_funcall is unable to pass Procs to functions
expecting blocks. The intuitive way of doing Ruby function calls from C, in this case then,
does not work:

ID a_ruby_function = rb_intern("a_ruby_function");

/* The second argument is an additional argument to be

optionally passed when invoking a Proc */

VALUE a_proc = rb_proc_new(a_C_block, Qnil);

/* Doesn't work! A Proc is not a code block */

VALUE result = rb_funcall(Qnil, a_ruby_function, 1, a_proc);

The only ways for invoking a Ruby method passing a code block are through rb_eval_-

string and rb_iterate. The �rst approach, besides the performance penalty caused by
parsing a string of code, has the inconvenience of requiring temporary variables so that one
can obtain return values back to the C data space. In the model using rb_eval_string,
the C function that will act as a block must be declared in the Ruby space. There are
two alternatives on how to do this: registering the method in Ruby and invoking it in a
wrapper block declared in the string of Ruby code:

50 CHAPTER 3. SCRIPTING LANGUAGE APIS

/* Declares a global function with 0 input parameters */

rb_define_global_function("a_C_block", a_C_block, 0);

rb_eval_string("$result = a_ruby_function { a_C_block() }");

VALUE result = rb_gv_get("$result");

Or encapsulating the function in a Proc object from C with rb_proc_new and then using
the & notation in the string of Ruby code:

VALUE a_proc = rb_proc_new(a_C_block, Qnil);

rb_gv_set("$a_proc", a_proc);

rb_eval_string("$result = a_ruby_function(&$a_proc)");

VALUE result = rb_gv_get("$result");

The second approach makes use of the fact that the only API function that is capable of
producing code blocks directly is rb_iterate. This function receives two function pointers,
one to the function to be invoked and another to the function that will act as a block; calls
to yield withing the �rst function will invoke the second one. The block may break the
�ow of execution with rb_iter_break. By passing as a �iteration function� to rb_iterate
a wrapper function that simply calls the desired Ruby method with rb_funcall, it is
possible to simulate a call to rb_funcall that receives a C function as a code block.

VALUE call_a_ruby_function() {

ID a_ruby_function = rb_intern("a_ruby_function");

return rb_funcall(Qnil, a_ruby_function, 0);

}

...

/* The Qnil arguments indicate that there are no parameters

to be passed to either function */

VALUE result = rb_iterate(call_a_ruby_function, Qnil, a_C_block, Qnil);

Notice that no arguments are passed to rb_funcall � rb_iterate de�nes a_C_block
as the �current code block� and this de�nition is inherited implicitly by rb_funcall.

For the common case of performing iteration on the each method of collections, Ruby
o�ers a wrapper function, rb_each. This function was designed to be passed as a �rst
argument to rb_iterate. C functions executing as a code block can break the control �ow
with rb_iter_break. The yielding mechanism, for both C code and native Ruby calls, is
implemented using the setjmp and longjmp C functions.

For correct error handling, C functions that perform calls to Ruby functions must be
encapsulated by a rb_protect call or one of its variants, rb_ensure and rb_rescue. If a
program does not use rb_protect, Ruby exceptions will result in fatal errors.

3.3.3 Java

Like in attribute access, when calling Java methods from C one must initially obtain
a method identi�er, of the jmethodID type. These identi�ers are typically obtained with
the GetMethodID function, which receives as arguments the class (an instance of jclass)

3.3. CALLING FUNCTIONS FROM C 51

and two strings, one with the method name and the other with the method signature. The
syntax for describing method signatures is similar to that of �eld descriptors discussed
in Section 3.1.3. Arguments are listed in parentheses, followed by the return type. For
example, "([Ljava/lang/String;II)V" describes a function with String[], int, int

arguments and void return. Alternatively to GetMethodID, since Java 1.2 it is possible
to obtain a jmethodID corresponding to a method by applying the FromReflectedMethod
function on a Java object of the Method class � that is, a method rei�ed through Java's
re�ection API.

Once a jmethodID was obtained, a method can be invoked through some of the 90
functions of the Call*Method* family. Function names follow this format:

Call<type><return>Method<arguments>

Here, <type> may be Static for static functions, passing a jclass as an argument in
calls; Nonvirtual when invoking implementations of a method from a speci�c class on a
given object, passing a jclass and a jobject as parameters; or omitted for instance meth-
ods, passing the jobject on which the method will be applied. Return type is indicated
in <return>: Void, Object, Int, etc.

Method arguments can be passed in three ways: as varargs, as a C array of jvalues,
or propagating a received va_list. For example, in its simplest form, an instance method
without input or output values is invoked with CallVoidMethod. CallStaticIntMethodA,
in contrast, invokes a static method which returns a jint and has its argument list passed
in an array of jvalues. Since Java is a statically typed language, it is not necessary to
specify the number of type of arguments passed in functions for method invocation. This
information is already speci�ed in jmethodIDs.

It is important to point out that, when obtaining method and �eld identi�ers resolving
them based on the jobject obtained in the this variable and the method or �eld name,
with GetObjectClass and GetFieldID, we are e�ectively resolving names through dynamic
scoping. This implies that, for example, if a method called Parent.method implemented
in C accesses a private attribute anAttribute and a Child subclass also de�nes a private
attribute with the same name, a call to this method in an instance c of Child would end up
accessing Child.anAttribute and not Parent.anAttribute. This behavior di�ers from
what would happen if Parent.method was implemented in Java, where binding of private
members is de�ned lexically. To ensure to the C implementation of Parent.method that
the anAttribute it is accessing is really Parent.anAttribute, one must store in C space
the �eld identi�er from Parent's jclass � obtained, for example, in a static native

function.
C code may verify the occurrence of exceptions through ExceptionCheck and choose

to handle it, obtaining a local reference of the exception with ExceptionOccurred and later
clearing it with ExceptionClear; or keep it active so that it propagates to Java code.

For the example of the test function, since Java does not have global functions, we will
assume that test is a static method of a class called Example and that we are running the
following C code in a context where we have a reference to a Java runtime environment
called J (this pointer, of JNIEnv type, will be discussed in Section 3.4.3).

52 CHAPTER 3. SCRIPTING LANGUAGE APIS

jclass example = (*J)->FindClass(J, "Example");

jmethodID test = (*J)->GetStaticMethodID(J, example,

"test", "(Ljava/lang/String;I)I");

jstring foo = (*J)->NewStringUTF(J, "foo");

long result = (*J)->CallStaticIntMethod(J, example, test, foo, (jint)2);

Initially, we get a reference to the Example class, from which we obtain the identi�er
of the desired method, based on its name and signature. Like in Ruby, the string passed
as a parameter must be converted to a virtual machine type, but for the second argument
and for the return value we explore the fact that jint, corresponding to the Java type int
(32-bit integer) is compatible with the C type long (de�ned as an integer of at least 32
bits). All these API functions return local references, which will be freed automatically by
the end of the C function where the API calls were made.

3.3.4 Lua

Both in C functions launched by Lua and in Lua function calls performed from C
code, input arguments and return values are passed through the virtual stack presented in
Section 3.1.4.

To call a Lua function from C, we must initially push to the stack the Lua object
referring to it: for global functions, obtaining it with lua_getglobal, for functions stored in
tables, with lua_gettable. Afterwards, we push its arguments and then invoke lua_call
or lua_pcall, indicating how many stack values are to be passed as a parameter. The
di�erence between these two functions is in error handling: lua_call propagates any
signalled errors, using longjmp; lua_pcall captures errors, returning a status code and
the error message in the stack.

When no errors occur, the stack will contain any values returned by the called function.
The number of return values can be explicitly requested with lua_call or lua_pcall, or be
de�ned at runtime, requesting the special value LUA_MULTRET. If a speci�c number of return
values is requested and these are not passed by the called function, the number of values
will be adjusted by adding nil elements or discarding excessive values. For calls with
LUA_MULTRET, all values are pushed. In this case, the only way to �nd out how many
values were returned is comparing the size of the stack before and after the call.

The lua_cpcall function allows calling C functions performing error capture like that
which takes place on lua_pcall without having to register them as Lua values. This
functionality is similar to that o�ered by rb_protect in Ruby. Ruby, however, does
not o�er any function analogous to lua_pcall, being sometimes necessary to wrap Ruby
function calls in C functions that follow the signature expected by rb_protect.

Lua does not have a distinction between functions and methods, but features syntactic
sugar that allows one to invoke functions stored in tables with a method-call-style syntax:
t:m(x) means t.m(t,x). Still, there is no speci�c call in the C API to replicate this abbre-
viation. For functions stored in tables, the function must be obtained with lua_gettable

and the table has to be pushed explicitly alongside the other parameters.

3.3. CALLING FUNCTIONS FROM C 53

The example of the test function call demonstrates the stack discipline adopted by the
Lua API. Similarly to the Java example of Section 3.3.3, we will assume the existence of a
lua_State pointer called L, which will be explained later on in Section 3.4.4.

lua_getglobal(L, "test"); /* Pushes the function test */

lua_pushstring(L, "foo"); /* Pushes the string "foo" */

lua_pushinteger(L, 2); /* Pushes the number 2 */

lua_call(L, 2, 1); /* Calls the function with 2 arguments,

expect 1 as the result */

long result = lua_tointeger(L, -1); /* Get the result at the top (-1) */

lua_pop(L, 1); /* Remove it off the stack */

With lua_getglobal, we push the global function test. Then, two input arguments
are pushed. The function is invoked with lua_call, indicating two input arguments and
requesting one output value. The return value, at the top of the stack (index −1) is
converted to C with lua_tointeger. This last function does not pop the value o� the
stack: to return it to its initial state, we need to remove it explicitly with lua_pop. As
the API never returns pointers to Lua objects, there are no concerns related to garbage
collection.

3.3.5 Perl

Calling Perl functions from C is done through a stack discipline, like in Lua. Input
parameters are speci�ed through push operations and return values are obtained from the
stack after the function call. The call functions call_sv, call_pv and call_method vary
only in the way how the function to be called is speci�ed: through an SV, a C string, or
a C string describing the name of a method in some object or class previously inserted in
the stack. The call_argv function, as a convenience, receives as an additional argument
a C array containing C strings representing arguments to be pushed. All of them return
the number of return values available in the stack.

All call_* functions receive an argument with �ags to be passed that indicate how the
function should be called and how to handle input arguments and return values. G_VOID,
G_SCALAR and G_ARRAY indicate the context how the function should be called. In scalar
contexts, for example, only one scalar is returned in the stack; if the called function returns
a list, only its last element will be available on the stack. G_DISCARD speci�es that return
values should be automatically discarded; G_NOARGS indicates that the default array of
parameters, @_, should not be constructed15.

The procedure for error checking depends on the context and given �ags, which a�ect
how error situations are reported to the return value of call_* functions and to values
returned on the stack. The G_EVAL �ag encapsulates the call in an eval block, capturing
errors. So, the occurrence of errors can be checked through the ERRSV macro, which returns
an SV containing the error message. By adding the G_KEEPERR �ag, error messages do not

15This has the side e�ect that the called function inherits the value of @_ from its caller.

54 CHAPTER 3. SCRIPTING LANGUAGE APIS

overwrite the special variable $@, but concatenate to it, accumulating sequences of errors
in di�erent call levels.

A series of macros describe a protocol for calling functions and manipulating input and
output parameters. The main ones will be explained below, as we present the Perl version
of the test function call:

dSP;

ENTER;

SAVETMPS;

PUSHMARK(SP);

XPUSHs(sv_2mortal(newSVpv("foo", 0)));

XPUSHs(sv_2mortal(newSViv(2)));

PUTBACK;

call_pv("test", G_SCALAR);

SPAGAIN;

long result = POPl;

PUTBACK;

FREETMPS;

LEAVE;

First, dSP declares a local copy of Perl's stack pointer. Then, ENTER and SAVETMPS

create a scope for mortal values. PUSHMARK starts the count of parameters to be passed to
the function. These parameters are then pushed with XPUSHs. Values created with newSVpv

and newSViv are converted to mortal values with sv_2mortal, so that they do not need to
have their reference counts decremented explicitly after the function call. PUTBACK �nishes
counting parameters. Then, we call the global Perl function test, in scalar context, with
call_pv.

After this function returns, memory in Perl's stack may have been reallocated, changing
the address of the stack pointer obtained with dSP. To make sure its value is correct, one
must call SPAGAIN after call_* functions. The POPl function pops a value and converts
it to long (there are similar functions for other types, such as POPs for SVs and POPpx for
strings). These operations pop values updating the local copy of the stack pointer. Thus,
PUTBACK must be called again to update the global pointer. Finally, FREETMPS and LEAVE

decrement the reference count of mortal values.

3.3.6 Comparison

In Python, Lua and Perl, functions can be accessed as language objects and invoked.
In Ruby and Java, the API de�nes special types used to reference methods. Like in data
manipulation, Python o�ers an extensive API, with several convenience functions allowing
parameters to be passed as Python tuples, Python objects given as varargs, C values to
be converted by the invocation function, etc. Java also o�ers a large number of method
invocation functions and, due to static typing, input parameters can be passed as varargs
in a direct way, without having to specify how their conversion should be made. Ruby also
o�ers some variants for call functions.

3.4. REGISTERING C FUNCTIONS 55

Lua, in contrast, separates the function call routine from argument passing, which is
done previously through the stack. This is a very simple solution, but the resulting code
is less clear than the equivalent calls in languages such as Ruby and Python. Perl also
features function calls using a stack model, but unlike Lua its use is exceedingly complex,
demanding a macro protocol to be followed which exposes the internal workings of the
interpreter. Another complicating factor is the handling of return values, for these vary
according to the Perl context in which the function is called.

In Lua and Python, the occurrence of errors can be checked through the function's
return value. In a similar way, Perl allows detecting errors in the most recent call checking
a special variable; in Java, this is done calling an API function. In Ruby, error handling is
more convoluted: strangely, the API o�ers a function for invoking C functions in protected
mode, but lacks an equivalent for calling Ruby functions. It is necessary to write a wrapper
function in those cases, which will be illustrated in Section 4.2.5.

3.4 Registering C functions

To allow the invocation of C functions from code written in a scripting language, its API
must provide a way to register these functions in the execution environment. In statically
typed languages, such as Java, to make it possible to call external functions using the same
syntax as native calls, the set of external functions must be declared a priori in some way.
On the other hand, in dynamically typed languages, as it is the case with Python, Lua,
Ruby and Perl, functions can be used directly; de�ning them at some point in time before
their call is su�cient. This way, one can declare external functions at runtime through C
code using the scripting language API.

Again in this section, the presentation of each language will conclude with an example.
A C function, which like in the previous section's examples, receives an integer and a string
and returns an integer, will be registered. We will present as well, for each language, how
to register this function as a global value16 test so that it can be directly invoked from
the language or through the API.

3.4.1 Python

Python does not have a proper �function� type declarable from C. Class methods, how-
ever, are objects and have a speci�c type, which can be veri�ed with the PyMethod_Check
function. Typically, methods are created passing an array of PyMethodDef structures.
These structures are composed by the name of the function, the pointer to the C function,
a �ags vector and a documentation string. These �ags are used to indicate the convention
adopted for input parameters in the C function. The most common �ags are: METH_NOARGS,
used for Python functions which receive no arguments, indicating that the C function will
receive a sole PyObject pointer which will contain the method's self; METH_VARARGS, for

16Or in the case of Java, a static method.

56 CHAPTER 3. SCRIPTING LANGUAGE APIS

functions that receive as a second parameters a Python tuple containing a variable num-
ber of parameters passed from Python to C; and METH_KEYWORDS, to indicate that the C
function receives as a third parameter a dictionary containing keyword arguments passed
to the function.

With this information in hand, API functions which operate on PyMethodDef arrays
can create and associate method objects to Python's space. Py_InitModule, for example,
initializes a module with functions from a PyMethodDef array. Likewise, methods of a class
implemented in C can be given in the tp_methods �eld of the PyTypeObject structure
relative to the class.

C functions registered in Python must return a pointer to PyObject, or NULL in case
of error (optionally declaring an exception with PyErr_SetString or PyErr_SetObject).
Functions that do not return values must return the pre-de�ned object Py_None, always
keeping in mind reference counting issues for returned values as discussed in Section 3.2.1.

Although methods are usually created in C using PyMethodDef structures, it is also
possible to create a method object explicitly from C with the PyMethod_New function,
passing as a parameter any callable Python object and the object or class is should refer
to. As seen in Section 3.3.1, Python object can be made callable by implementing a
__call__ method in Python or associating a C function to the tp_call �eld of their
corresponding PyTypeObject.

A simple implementation of a C function that can be registered in Python as the test
global function is given below:

PyObject* test_py(PyObject* self, PyObject* args) {

char* foo; long n;

/* In case of argument errors, PyArg_ParseTuple

raises the appropriate exception automatically */

if (!PyArg_ParseTuple(args, "sl", &foo, &n))

return NULL;

printf("Received: %s and %ld \n", foo, n);

return PyInt_FromLong(42);

}

Since arguments were received as a tuple in the second parameter, the function signature
corresponds to the METH_VARARGS �ag. Input arguments are converted to C and checked
with PyArg_ParseTuple. The return value is converted from the native C type to a
PyObject with PyInt_FromLong, generating a new reference.

The Python API is designed primarily to the development of extension modules for
the language. Though several functions exist for registering methods in classes and ini-
tializing modules with function lists, there is no direct way for registering global functions
in the virtual machine. A possible way is using the utility routing for method lookup,
Py_FindMethod, and inserting the returned method in the dictionary of the global module
__main__:

PyObject* globals = PyModule_GetDict(PyImport_AddModule("__main__"));

static PyMethodDef test_def[] = {

3.4. REGISTERING C FUNCTIONS 57

{ "test", (PyCFunction) test_py, METH_VARARGS, "a test" },

{ NULL }

};

PyObject* test_obj = Py_FindMethod(test_def, NULL, "test");

PyDict_SetItemString(globals, "test", test_obj);

Notice that NULL was passed to Py_FindMethod, indicating that there is no object the
method will be part of. Because of that, the self argument received by the C function
test_py will also be NULL and can be ignored. The test_def array was declared static to
ensure that the PyMethodDef will remain valid as long as the global function is registered,
as in the creation of test_obj a pointer to it is stored internally in the newly created
object.

3.4.2 Ruby

For C functions to be callable from Ruby, they must be declared as methods of some
class or module, or as a global function. For that, a C function pointer and the number of ar-
guments expected by the function is passed to one of the appropriate functions of the Ruby
API: rb_define_method, rb_define_module_function, rb_define_global_function or
rb_define_singleton_method. The number of arguments passed indicates the expected
signature for the C function. Ruby supports explicitly C functions with up to 15 argu-
ments; as an alternative, the special values -1 and -2 indicate, respectively, that the C
function will receive its arguments as a C array of VALUEs or as a VALUE corresponding to
a Ruby array.

Resembling the PyArg_ParseTuple function discussed in Section 3.1.1, Ruby features a
function designed to simplify the processing of input values in C functions: rb_scan_args.
This function can be used when input arguments are received in a Ruby array. Like
PyArg_ParseTuple, it is a vararg function which receives a format string indicating the
number of arguments to be collected. Unlike its Python counterpart, though, it does not
perform type checking in its arguments. The format string allows indicating the minimum
and maximum number of parameters that will be accepted and if exceeding parameters
should be collected into a Ruby array.

Once declared in Ruby's object space, a C function can be called like any other
method. The C function can check if Ruby code has passed it a code block through
the rb_block_given_p function. The block can then be invoked with rb_yield, which
receives a VALUE as an argument. To pass multiple arguments to rb_yield, one must pass
a Ruby array. To obtain a VALUE of the Proc type produced from a received code block
it is necessary to use rb_scan_args, which provides functionality similar to that of the &
operator in Ruby function declarations.

C functions implementing Ruby methods must always return a VALUE (Qnil when there
is no result). Functions that return multiple values must do so through Ruby arrays.

Proceeding with the series of examples, the Ruby global function test can be imple-
mented in C as follows:

58 CHAPTER 3. SCRIPTING LANGUAGE APIS

VALUE test_rb(VALUE self, VALUE val_foo, VALUE val_n) {

char* foo = StringValuePtr(val_foo);

long n = NUM2INT(val_n);

printf("Received: %s and %ld \n", foo, n);

return INT2NUM(42);

}

Conversion of input VALUEs is done with the StringValuePtr and NUM2INT macros.
There is no explicit code for error handling during these conversions because these macros
trigger exceptions that escape the function using longjmp in case the conversion was not
possible. For output, a VALUE is produced with the INT2NUM macro. The �rst input
argument is necessary because of the convention of function signatures adopted by the
API, but for global functions it should be ignored.

As Ruby o�ers an API function for de�ning global functions, the registration of test
is very simple:

rb_define_global_function("test", test_rb, 2);

We indicate the Ruby name of the function, the corresponding C function and the number
of arguments it expect (not including self).

3.4.3 Java

Methods declared in Java that are not implemented in the language itself must be
declared through a prototype including the native modi�er. Thus, native does not refer
to a native implementation in Java, but to the fact that the method's code will be compiler
with native code of its runtime environment, as opposed to virtual machine bytecodes. The
implementation of the method, usually wrapped in a C dynamic library, must be loaded
before its execution using the System.loadLibrary call in Java, usually in a static block of
the corresponding class. For each native method, a matching C function must be declared
in the loaded library.

The javah utility generates C header �les from Java classes, with prototypes for C func-
tions following the format speci�ed by the JNI. This format speci�es not only the signature
of input parameters and return types, but also the name of the function, so that the loader
can link the C function to the proper Java method in the virtual machine. Functions must
be called Java_<class name>_<method name>. In case of function overloading, a su�x is
added indicating the type of input parameters (for example, Java_SomeClass_method__DI
for the version of SomeClass.method which accepts a double and an int as arguments).

The function input arguments are a pointer to JNIEnv, which represents a thread in the
JVM, a jobject representing the object on which the method was applied (or a jclass for
static methods) and the remaining arguments of the Java method in their C representations,
discussed in Section 3.1.3. As the types of given arguments are de�ned statically both in
Java and C, it is not necessary to perform type checking of received arguments in C code.
The signatures of functions which implement methods, speci�ed in header �les generated
by the javah tool, already declare correct types.

3.4. REGISTERING C FUNCTIONS 59

The return value corresponds the equivalent C type to the return type declared in the
Java method. Values represented as reference types can be returned either as local or
global references. Besides handling or propagating errors as discussed in Section 3.3.3, C
functions can also generate exceptions with Throw and ThrowNew and return immediately.
The return value will be ignored when the exception is captured in Java code.

Since the way for exposing to the virtual machine Java functions implemented in C
is di�erent than that used in languages presented earlier, we will start by declaring the
function to the Java space, and present the C implementation of test afterwards. In the
Java class, we declare a native method:

public class Example {

static native int test(String foo, int n);

// ...other class members

static {

System.loadLibrary("Example");

}

}

After compiling this class we can pass it to the javah command, which will generate a
C header. This �le will contain the name and signature of the C function that the JVM
will lookup in the library that will be loaded by System.loadLibrary17. This library will
implement functions relative to methods declared as native.

Below, we present a C implementation, using the header generated by javah, for the
test method:

#include <jni.h>

#include <stdio.h>

/* Header generated by javah */

#include "Example.h"

JNIEXPORT jint JNICALL

Java_Example_test(JNIEnv* J, jclass c, jstring obj_foo, jint n) {

const char* foo = (*J)->GetStringUTFChars(J, obj_foo, NULL);

printf("Received %s and %ld \n", foo, n);

(*J)->ReleaseStringUTFChars(J, obj_foo, foo);

return 42;

}

JNIEXPORT and JNICALL are macros de�ned in jni.h to provide greater portability to
the resulting C code. Since the method was declared static in Java, a class reference
is received as an argument to the function. The remaining arguments correspond to the
arguments of the Java method, and are given in the equivalent types de�ned by the JNI. As
discussed in Section 3.1.3, the JNI handles reference types and immediate types di�erently.
Because of that, only obj_foo needs to be converted to C; both n and the return value are
used directly as basic C data types.

17The argument given to it in Java code is used as a basis when constructing a platform-dependent
name. In Unix systems, for example, System.loadLibrary("Example") loads the �le libExample.so.

60 CHAPTER 3. SCRIPTING LANGUAGE APIS

The string obtained with GetStringUTFChars is converted to UTF-8 from its internal
Unicode representation in Java. The same pointer can be returned by the JVM to di�erent
threads that request the same string. This way, C code must explicitly notify its release
with ReleaseStringUTFChars.

3.4.4 Lua

C functions exposed to Lua must match the lua_CFunction type, receiving as a sin-
gle argument a pointer to a variable of the lua_State type and returning an int. A
lua_State encapsulates the entire state of a Lua virtual machine; multiple Lua states can
be maintained in parallel. Every function of the core API receives a lua_State as a �rst
argument, except for lua_newstate, which creates a new lua_State.

At the beginning of the C function, arguments given to it are available in the virtual
stack. Like in Lua functions, there is no checking on the number of arguments given to a
C function invoked from Lua or through the API. C code can check the number of received
arguments inspecting the size of the stack.

The auxiliary library also provides functions for checking in a more convenient way types
of passed arguments. Functions of the luaL_check* family (luaL_checkint, luaL_check-
string, etc.) check the type of a stack elements and return them, signalling error if the
element type is not as requested. The luaL_opt* functions behave in a similar way, allowing
also to indicate a default value if the requested element is absent or nil.

Return values are also passed by the C function back to Lua through the virtual stack.
The integer value returned by the C function indicates how many elements of the stack
should be returned to the caller function. Any remaining values are discarded.

A C function of the lua_CFunction type can be passed to Lua through the lua_pushc-
function call. Lua has also some convenience functions for registering a set of C functions
at once. Like when using PyMethodDef arrays in Python, the luaL_register function
registers a list of functions, receiving an array of luaL_Reg structures containing names
and function pointers.

A C function implemented the example function test is given below:

int test_lua(lua_State* L) {

const char* foo = luaL_checkstring(L, 1); /* Get the first argument */

long n = luaL_checkinteger(L, 2); /* Get the second argument */

printf("Received %s and %ld \n", foo, n);

lua_pushinteger(L, 42); /* Push the return value */

return 1; /* Return one value, off the top of the stack*/

}

The function's signature matches the de�nition of lua_CFunction. Input parameters are
obtained from stack positions 1 and 2 and their types are checked using the auxiliary library
functions luaL_checkstring and luaL_checkinteger. These functions signal error in case
of conversion failure, causing a longjmp like in Ruby.

The type of the obtained string is const char*, as it points to a memory block managed
by the virtual machine. In Lua, however, it is not necessary to notify explicitly the release

3.4. REGISTERING C FUNCTIONS 61

of the string, because it remains valid as long as the value is on the stack. As the functions
luaL_check* do not pop the parameters and the stack is emptied implicitly by the end of
the C function, the obtained C string will remain valid during the whole function.

At the end of test_lua, the return value passed to Lua is pushed using lua_push-

integer. The return value of the function in C, 1, indicates to the virtual machine that
there is a single output value to be fetched from the stack and used as a function result in
Lua.

The function is registered in Lua creating a Lua object of the function type from
the C function and storing this object in a global variable. This could be done with
lua_pushcclosure and lua_setglobal, but Lua's header �le has a macro that wraps
these two calls. Therefor, hte function can be registered simply with:

lua_register(L, "test", test_lua);

Using lua_pushcclosure, it is possible to associate to a C function Lua values that will
be accessible to the function every time it is called, akin to local static variables in C. This
feature provides functionality that is similar to Lua closures, but in a more limited form:
these values are private to C functions, while in Lua two closures de�ned in a single scope
will access the same variables, that is, changes to values in one function will a�ect the other.
This restricted form, however, is often enough for implementing in C �stateful functions�
such as iterators and generators. Once registered in Lua, C functions are seen as values
of the function type, no di�erently than Lua functions. In fact, lua_pushcfunction is a
particular case of lua_pushcclosure in which no Lua values are associated to the function.

3.4.5 Perl

As discussed in Section 3.1.5, the interface between Perl and C was designed having in
mind that the connection between C functions and the Perl interpreter is made through
generated code from a description given in a higher-level language, XS. XS code consists of
function signature declarations using a special syntax, indicating conversion rules for input
and output parameters, and C code describing the implementation of these functions. XS
was designed for the development of Perl extensions including functions implemented in
C: the end result of the compilation of code generated by the XS tools (h2xs, xsubpp) are
C and Perl code that combined describe a Perl package (a set of variables and functions
stored under a common namespace).

There is a public API for manipulating Perl data in C code, but this consists basically of
the interpreter's internal structures exposed for use by the XS pre-processor, extended with
some macros for programmer convenience. In fact, Perl does not expose a documented API
for registering functions [30]. Because of that, it is not practical for an application to embed
a Perl interpreter and expose to it a set of C functions using C code only. The alternative
is to create a Perl extension using XS which exposes functions from the application and
import the resulting package into the embedded interpreter. We observed the use of this

62 CHAPTER 3. SCRIPTING LANGUAGE APIS

approach in Perl scripting plugins of several applications18.
The h2xs utility generates a directory containing the skeleton of a Perl module: a

Make�le generator script, .xs and .pm �les to be �lled by the programmer with XS and
Perl code, as well as auxiliary �les. Resuming the example of the test function, this is
how it would be declared in XS:

long test(foo, n)

char* foo

int n

CODE:

printf("Received %s and %ld \n", foo, n);

RETVAL = 42;

OUTPUT:

RETVAL

The .xs �le is converted to .c with xsubpp. C code for converting input and output
parameters is generated automatically. In some cases, however, we need to manipulate
values from the Perl stack explicitly, as described in Section 3.1.5. In vararg functions,
for example, additional arguments must be accessed directly from the stack. Code for
registering module functions is also generated automatically.

XS creates variable called RETVAL automatically for storing the return value in C code.
The contents of this variable are then converted to a Perl value by generated C code. To
make sure that functions returning arrays will operate correctly in scalar contexts, their
code should verify the context the function was called with GIMME_V and then return an
SV or AV accordingly. In those cases, a function must be declared with SV* as the return
type, and as such, C values have to be converted to Perl SVs explicitly. The documentation
alerts that, for the case of AVs, one must declare the return value as a mortal variable19.

Once a extension is compiled using Make�les generated by h2xs, it can be loaded an
used from Perl:

use Example;

$ret = Example::test("foo", 2);

print $ret . "\n";

To expose functions from a C application to an embedded Perl interpreter, we have to
create an extension that wraps these functions using XS, link the extension to the applica-
tion and load it. The loading is performed passing to the interpreter during its initialization

18Vim (http://www.vim.org), Gimp (http://search.cpan.org/search?mode=dist&query=gimp)
and Gaim (http://gaim.sourceforge.net) are some applications that implement Perl plugins through
XS extensions. In the Perl plugin for Xchat (http://www.xchat.org), there are no .xs �les, but .c

sources include functions declared with undocumented APIs and Perl code equivalent to the .pm �le gen-
erated by xsubpp is declared as a C string evaluated with eval_pv, leading us to assume that the plugin
was implemented as an XS extension and later converted to a single C source �le.

19This behavior is described in the documentation as �an un�xable bug (�xing it would break lots of
existing CPAN modules)� [35].

3.4. REGISTERING C FUNCTIONS 63

a C function containing newXS calls. The ExtUtils::Embed Perl module has a utility rou-
tine called xsinit which generates C code for this function. In practice, generating code
with xsinit is the best approach, since the initialization protocol depends on undocu-
mented routines (the example initialization function included in Perl's documentation [23]
is out-of-date).

3.4.6 Comparison

Python and Ruby o�er to the programmer various options for C function signatures
that are recognized by the API, which is practical, given that this way one can choose
di�erent C representations for the input parameters (collected in an array, obtained one
by one, etc.) according to their use in the function. Lua o�ers only one possible signature
for C functions to be registered in its virtual machine, but this is appropriate for the stack
model adopted by its API.

In Java, function signatures are created through the javah tool � due to its static type
system, types of input parameters passed by Java are converted automatically by the JNI,
which is very convenient as it avoids explicit operations for conversion and type checking in
the function. Because of their dynamic type systems, the other languages o�er speci�c API
functions for performing these checks. Perl function signatures are created only through
the XS tool, but di�erently from Java they are not exposed to the programmer. This brings
the inconvenience that the programmer needs to pre-process C code as an XS extension
even when they are embedding Perl in an application.

Registration of functions in Ruby and Lua is simple. In Lua, in particular, it is an
assignment, not di�erent from any other object. In Python, there are features for batch
registering, using PyMethodDef arrays (Lua o�ers a similar feature with luaL_register),
but there is no simple way to register a single function. Both in Java and Perl, function reg-
istration is done implicitly, and there are no API functions for registering new C functions
at runtime in either of them.

64 CHAPTER 3. SCRIPTING LANGUAGE APIS

Chapter 4

Case study: LibScript

In previous chapters, we discussed the main issues involving language interfaces for
C and the way these issues are handled by the languages covered by this study. In this
chapter, we will make a comparison between their APIs through a concrete example, in
order to put implementations on each of those languages side by side. The example consists
of a generic scripting library called LibScript, and a series of plugins that interface di�erent
scripting languages.

4.1 LibScript

LibScript is a library designed to provide extensibility to applications through scripting
in a language-independent way. It is based on a plugin architecture, in order to decouple
the application from runtime environments provided by the various languages. The main
library provides a language-independent scripting API, allowing an application to register
its functions and launch scripts that use these functions. This library then invokes a plugin
for the appropriate language to run the script (for example, LibScript-Python for Python
code). This way, application developers allow their users to employ di�erent scripting
languages without adding all of them as program dependencies.

The main library provides features for registering C functions from the application and
for calling these functions from the plugins (allowing scripts to access these functions),
besides functions for transferring data between the application and plugins. It is also
possible to invoke functions implemented in virtual machines embedded in plugins, enabling
scripts written in di�erent languages to interact with each other.

4.1.1 Architecture of LibScript

LibScript is composed of a main dynamic library, libscript, and plugins for di�erent
languages (Figure 4.1). The main library is linked to an application, and exposes to it a
language-independent scripting API which allows running �les, strings of code and invoking
functions. This library is a thin layers which forwards these operations to plugins, which

65

66 CHAPTER 4. CASE STUDY: LIBSCRIPT

Figure 4.1: Overview of the LibScript architecture

4.1. LIBSCRIPT 67

are auxiliary dynamic libraries, loaded at runtime by the main library. These plugins
embed the scripting languages' runtime environments.

The application can register C functions in the main library (illustrated by the c_fun
function in the �gure) and ask it to run scripts which register functions in di�erent lan-
guages. However, the application does not interact directly with plugins. When the main
library receives code to be executed in a given language, it loads the appropriate plugin (in
case it was not already loaded) and forwards the code. The plugin will run the script in its
virtual machine, which may register in it new functions (illustrated by functions py_fun,
r_fun, l_fun and pl_fun in the �gure).

The main library decides which plugin to load through an identi�er which speci�es
which is the language of the code to be executed. This identi�er can be obtained from the
�lename extension of a script, through the �#!� identi�cation line at the beginning of the
script1 or even passed explicitly by the application.

Functions are registered in LibScript in a virtual environment. An application can
create one or more environments in the main library, identifying them through a name. A
virtual environment has, in each plugin, a language-speci�c data structure (class, module,
etc.) which will represent it. In the example in Figure 4.2 we have two virtual environments
created by the application in the main library, X and Y. In each of these environments, the
application registered a C function with the name c_fun (which may or may not correspond
to the same C function). Scripts were executed in these environments, which prompted
the loading of plugins. In the example, these scripts registered some functions (X.py_fn,
Y.py_fn, X#r_fun, etc.).

Apart from the function for creating a virtual environment, all functions in the LibScript
API receive as an argument a virtual environment they should operate on. This indicates
in which C structure should be stored error messages and return values. For languages
that allow multiple independent runtime states, like Lua and Perl, this also indicates in
which state the script should run.

When a script declares a function in a virtual environment, this function becomes
accessible through the LibScript API. For example, in the Lua plugin, virtual environments
are represented as tables named after the environment; once a Ruby method r is declared
in class X, this function becomes callable by C (using the LibScript API) or by other
plugins. So, for example, even though the Lua table that implements virtual environment
X contains only function l_fun, Lua scripts can invoke other functions through the virtual
environment, like X.c_fun and X.r_fun. These calls will be handled by the main library
and resolved by itself, in the case of C functions such as X.c_fun, or forwarded to the
appropriate plugin, as in the case of X.r_fun, performing the call in the Ruby plugin and
forwarding return values back to the Lua plugin. The main library �nds the function do
be executed consulting each plugin, as it will be explained in Section 4.1.3.

When implementing plugins, we used features o�ered by these languages to handle

1The �#!� line is used only to detect which language the script is written in. For example, a line
with #!/usr/bin/perl -w will indicate that libscript-perl should be loaded, but the Perl interpreter
in /usr/bin is not used and the -w �ag is not considered.

68 CHAPTER 4. CASE STUDY: LIBSCRIPT

Figure 4.2: Virtual environments in LibScript

4.1. LIBSCRIPT 69

accesses to missing elements in their structures, capturing these accesses and forwarding
them to the main library. These features will be discussed in Section 4.2.4.

4.1.2 Main library API

The API provided by LibScript isolates the application from the di�erent APIs provided
by scripting languages. It is not only a matter of adding a layer of indirection between
calls, which would be appropriate only for features that are common to all of them, such
as initialization and function calls. The main issue here are the various features that
are particular to each language. An unpractical approach would be to de�ne the API as
the union of the feature sets of every supported language (such as o�ering features for
sequence handling to map this Python feature, table handling features for Lua, and so on).
This path would bring several problems: the API would be complex and would probably
have to be extended as each new language is introduced; even for mappings that could
apparently be reused (for example, mapping Python hashes and Lua tables to a single
API of associative arrays) there is the problem of subtle semantic variations between the
implementations of those features in the various languages. Besides, application bindings
could o�er functionality that is available for a single language, going against the model of
language independence proposed by LibScript.

Another approach is to, instead of exposing the language API to the application, expose
only a function API of the application to the language and keep its data structures and
features restricted to the domain where it is invoked. The application interacts with the
virtual machine sending strings of code to be executed and obtains results back when the
script passes parameters when calling application functions. This approach is proposed
in [41] and uses what, for example, Python calls a �very high level layer� [44, 45]. Primitives
for running strings of code are a basic feature in scripting languages � luaL_loadstring

in Lua, PyRun_SimpleString in Python, rb_eval_string in Ruby , perl_eval_sv in
Perl [23].

LibScript adopts this minimalist approach for its API: no speci�c operations for data
structure manipulation are o�ered, only for executing strings � script_run (and the con-
venience function script_run_file, which reads a �le and sends it to script_run) � and
function calls with basic types (numbers and strings) � script_call. Operations on more
complex data of language-speci�c types, when needed, can be encapsulated in functions
implemented in the scripting language. One can also reference language objects from C
storing it in structures of the scripting language and returning to C numerical indices of
these structures, acting as high-level handles for these objects.

Figure 4.3 depicts the interaction between the application, the main library and plugins
with regard to these two fundamental operations, represented by functions script_run and
script_call. For executing strings, the main library receives input from the application
and forwards code to be executed to the appropriate plugin. When using script_run,
two strings are passed, one identifying the language and another containing code; for

70 CHAPTER 4. CASE STUDY: LIBSCRIPT

Figure 4.3: API for running code in LibScript

4.1. LIBSCRIPT 71

script_run_file, a �lename2. The following example declares a virtual environment,
registers a C function called hello and invokes it from Lua code:

script_env* env = script_init("example");

script_new_function(env, hello, "hello");

script_run(env, "lua", "example.hello()");

The virtual environment is declared with the script_init function. It receives the
name that will identify the environment and returns an identi�er of the script_env type,
which is an opaque pointer that represents a virtual environment. The C function is
registered using script_new_function, which receives as arguments the environment, a
function to be registered and the name that the function will have in the virtual environ-
ment. In Lua code, the function is accessed as element hello (the registered name of the
function) of global table example (name of the virtual environment).

For function calls, the application should pass input parameters (how this is done will
be discussed later on), and call script_call, indicating the name of a function registered
in the virtual environment. This same function script_call is used by plugins when they
wish to invoke functions from the virtual environment registered in C or implemented by
other plugins.

For this reason, we adopted a generic API for data transfer, to be used both in input and
output of data, both in the communication between the application and the main library
and between the main library and plugins. We chose an approach similar to those employed
by Lua (Section 3.3.4) and Perl (Section 3.3.5) for sending data when passing parameters
and obtaining return values, using an internal bu�er as a transfer area. Di�erently from
those languages, however, we pass indices to parameters explicitly instead of implementing
a stack discipline. Functions script_{get,put}_{string,int,double,bool} are used for
input and output of values. Functions script_put_* store values in the internal bu�er
and script_get_* remove them. A call to a function called test passing a string and an
integer as parameters and obtaining an integer as a result is performed like this:

script_put_string(env, 0, "foo"); /* index 0: "foo" */

script_put_int(env, 1, 2); /* index 1: 2 */

script_call(env, "test");

result = script_get_int(env, 0); /* return index 0 */

Function calls are o�ered as a primitive operation because they allow a minimum de-
gree of language-independent interoperability. Two goals are met this way. The �rst one
is that this way C programs embedding LibScript can access the functionality of loaded
scripts without having to include in their source code strings of code written in some spe-
ci�c scripting language, for example, inserting in their code an invocation to a callback
function to be de�ned through a script. Notice that in the above example, the language in
which the test function is implemented is not speci�ed. If the call was made by running

2For code executed with script_run_file, the language is automatically detected as discussed in the
previous section.

72 CHAPTER 4. CASE STUDY: LIBSCRIPT

a string of code, this would tie the application to at least one scripting language. Us-
ing script_run_�le and script_call, one can implement an extensible application without
specifying explicitly the scripting language to be used with it. The second goal is allowing
the plugins themselves to invoke functions de�ned in other plugins. We would have to
provide to plugins an invocation function anyway, to allow them to invoke C functions
registered into LibScript. Making this invocation function generic enough so that it can
also invoke functions implemented in the plugins themselves does not make, thus, the main
library API any more complex.

The LibScript bu�er was designed to be used only as a temporary transfer area between
the main library and plugins, and not as a general facility for data storage and manipu-
lation. Therefore, its API is focused on sequential insertion and removal of elements. For
example, the insertion of an element at position 0 automatically empties the bu�er, avoid-
ing in most cases the need to use the script_reset_buffer function, which performs this
operation explicitly.

C functions registered with script_new_functionmust receive the virtual environment
as a parameter and return an error code. Functions script_get_* and script_put_* are
used to receive arguments and return values when implementing functions that can be
called through LibScript, the same way they are used to pass arguments and obtain return
values and perform calls with script_call.

script_err test_lua(script_env* env) {

char* foo = script_get_string(env, 0); /* Input, index 0: string */

int n = script_get_int(env, 1); /* Input, index 1: integer */

/* Escape the function with an error if any script_get* failed */

SCRIPT_CHECK_INPUTS(env);

printf("Received %s and %ld \n", foo, n);

free(foo);

script_put_int(env, 0, 42); /* Output, index 0: integer */

return SCRIPT_OK;

}

In LibScript, strings returned by script_get_string belong to the caller, being their
responsibility to deallocate its memory, unlike what happens in similar function of the
APIs of languages discussed in this work. Such decision was made due to the temporary
nature of the LibScript bu�er: returning to the caller a pointer to a string whose validity
would be ensured only until the next API call would be counter-intuitive, and in practice
would force the programmer to copy strings frequently.

4.1.3 Plugins API

A plugin embedding a scripting language must implement four operations: init, run,
call and done. The main library expects that the dynamic library implementing a plugin
for a language will expose four functions, named as script_plugin_operation_language.

The script_plugin_init_language function is responsible for initializing a plugin,
and is called by the script_init function of the main library. When initializing a plugin,

4.2. IMPLEMENTATION OF PLUGINS 73

the main library passes to script_plugin_init_language a script_env pointer and re-
ceives a script_plugin_state, which is an opaque type which is always passed back
to the plugin in subsequent calls. Each plugin de�nes its internal representation for
script_plugin_state. Typical the virtual machine state and the LibScript virtual en-
vironment should be stored so that they can be later accessible through this handle. In
Section 4.2.1 we will discuss how each plugin represents the environment and its internal
state in script_plugin_state.

The script_plugin_run_language function is invoked by script_run. It receives a
string containing code in the scripting language, executes this code in the virtual machine
and returns a status code indicating success or the occurrence of compile or runtime errors.
In case of errors, plugins should capture exceptions raised by the virtual machine and
return the constant SCRIPT_ERRLANGRUN. If it is possible to obtain from the language
an error message, it can be propagated using the script_set_error_message function
from the main library. The message can be later consulted by the application using the
script_error_message function.

The function script_plugin_call_language is used by script_call, and is responsi-
ble for performing calls to functions implemented in the language embedded by the plugin.
If the function was de�ned in the plugin, that is, if a function with the given name was
registered in the data structure that describes the environment within the virtual ma-
chine, it will be executed, and success or failure will be reported like it happens with
script_plugin_run_language. If the requested function was not de�ned in this virtual
machine, script_plugin_call_language must return the constant SCRIPT_ERRFNUNDEF.
Input arguments and return values are passed through the argument bu�er, using the same
functions from the main library that are used to transfer data between the application and
the main library, script_get_* and script_put_*.

The implementation of script_call in the main library makes use of this behavior of
plugins for invoking functions in a language-independent way. Initially, it tries to �nd a
requested function in the list of registered C functions. If there is no C function in the
virtual environment with that name, script_call tries to locate the function in loaded
plugins, calling script_plugin_call_language on each plugin and trying the next one
each time it receives SCRIPT_ERRFNUNDEF.

Finally, the script_plugin_done_language function is called by script_done when
a virtual environment is terminated. Depending on the internal representation used in
the plugin, the termination of a state may or may not imply in the termination of the
virtual machine. Preferably, this function should remove the data structure that describe
the virtual environment, but as we will see in Section 4.2.2, this is not always possible.

4.2 Implementation of plugins

In this section we will discuss the main aspects involved in the implementation of the
plugins developed in this case study. We implemented plugins for Python, Ruby, Lua
and Perl. We will present here how the representation of virtual states is made in each

74 CHAPTER 4. CASE STUDY: LIBSCRIPT

plugin (Section 4.2.1), issues involving state termination (Section 4.2.2), passing parameters
between the main library and plugins (Section 4.2.3), how function calls from scripts are
handled by plugins (Section 4.2.4) and error capturing (Section 4.2.5).

4.2.1 Representation of states

The design of LibScript allows plugins to have multiple independent states of execution.
Ideally these states would be totally isolated from each other, like for example with di�erent
virtual machine instances. However, languages o�er di�erent degrees of isolation between
independent states. Lua and Perl allow multiple isolated instances of their runtime envi-
ronments in a simple way, since their API calls include a state identi�er3. Language that
keep state in a static manner, like Python and Ruby, don't allow working with multiple
isolated states easily4. For languages that do not allow multiple virtual machine instances,
we can only de�ne separate namespaces for LibScript virtual environments, which share a
single global state of execution within the plugin. We term the representation of a state of
execution relative to a LibScript virtual environment within a plugin a virtual state, which
may or may not correspond to an isolated state of execution.

As discussed in the previous section, the script_plugin_init_language function re-
turns a script_plugin_state to the main library, which is the opaque representation of its
virtual state. The contents of this representation vary from language to language, but the
basic principle is that two data should be available from this value: a reference to the Lib-
Script virtual environment, received as an argument by script_plugin_init_language, so
that the plugin can make calls to the main library, and an identi�er that allows the plugin
to access the data structure that represents for the language the namespace of LibScript-
accessible functions. In the Lua plugin, this structure is a table; in Python, a module; in
Ruby, a class; in Perl, a package.

In LibScript-Lua, states are implemented as lua_States (Section 3.4.4). This way,
scripts executed in an environment are fully isolated from other environments. For example,
the modi�cation of the value of a global variable in an environment does not a�ect the other
ones. In fact, script_plugin_state as returned by the Lua plugin is simply a lua_State

converted with a cast. The pointer to the LibScript environment is stored in Lua in the
registry, as follows:

lua_pushstring(L, "LibScript.env"); /* Pushes the index */

lua_pushlightuserdata(L, env); /* Pushes the LibScript environment */

lua_settable(L, LUA_REGISTRYINDEX); /* registry["LibScript.env"] = env */

3The feature of multiple independent states is optional in Perl, and can be selected during compilation
of the interpreter's library.

4Python's threading model o�ers a way for alternating between virtual machine states obtaining
PyThreadState objects through the Py_NewInterpreter call, but this can cause problems when extension
modules written in C use global static variables or when modules manipulate their own dictionary, which
is shared between states. The documentation states, since 1999, that �This is a hard-to-�x bug that will
be addressed in a future release.� [43, 46]

4.2. IMPLEMENTATION OF PLUGINS 75

The plugin creates in this lua_State a table representing the virtual environment for
Lua scripts. This table is stored in the lua_State as a global variable with the name of
the virtual environment.

In LibScript-Perl states are isolated like in Lua. Each state created initializes a new
instance of PerlInterpreter. In this interpreter, a package is created, which will be the
visible representation of the environment in Perl code. The script_plugin_state type is
then a typedef for PerlInterpreter*.

As discussed in Section 3.4.5, the implementation of C functions exported to a Perl
interpreter is made writing an extension module using the XS pre-processor, and the way
to obtain communication in the Perl→C direction in an embedded virtual machine is linking
an extension module to the virtual machine. Thus, part of LibScript-Perl is implemented as
an XS module, exposed to the embedded virtual machine as the LibScript Perl package.
During the initialization of a virtual state, the pointer to the LibScript virtual environment
is stored in this package, in the $LibScript::env variable. The package that represents
the virtual environment is created by the script_plugin_init_perl function, executing
the string of code "package <environment>;" using the function Perl_eval_pv.

As Python does not feature facilities for launching multiple fully isolated virtual ma-
chines, the Python plugin implements virtual states only as separate modules, sharing a
single global state. During the initialization of a state, a Python module with the name
of the environment is created. The following excerpt of the script_plugin_init_python
function shows the sequence where the module is created and imported:

/* Get the name of the environment */

char* namespace = script_namespace(env);

/* Creates the module. The first argument is the module name,

the second one the module's method list, which will start empty */

PyObject* module = Py_InitModule3(namespace, NULL);

/* Get the globals dictionary */

PyObject* globals = PyModule_GetDict(PyImport_AddModule("__builtin__"));

/* Assigns the module to the global with its name */

PyDict_SetItemString(globals, namespace, module);

The script_plugin_state type is a typedef for PyObject*. The object returned
by the initialization function is the elements dictionary of the module, obtained with
PyModule_GetDict(module). In this dictionary, we store the pointer to the virtual en-
vironment as the private attribute __env.

Similarly, in Ruby virtual states are implemented as classes that share a single global
state, since Ruby does not allow multiple isolated runtime environments either. In the
initialization function, script_plugin_init_ruby, a class with the name of the virtual
environment is created using the rb_define_class function. The pointer to the virtual
environment is stored in a class constant as a number. The VALUE corresponding to the
new class is returned as the script_plugin_state.

VALUE state;

/* ... (initialization of the interpreter omitted) ... */

76 CHAPTER 4. CASE STUDY: LIBSCRIPT

/* class_name is the name of the virtual environment,

with its initial converted to uppercase,

respecting Ruby's class naming convention */

state = rb_define_class(class_name, rb_cObject);

/* This assumes void* fits in a long */

rb_const_set(state, rb_intern("@@LibScriptEnv"), INT2NUM((long)env));

/* ... */

return (script_plugin_state) state;

4.2.2 Termination of states

Because Lua and Perl represent states in an independent way, state termination in these
plugins is simple: the language structure which wraps the complete runtime environment
is terminated. The implementation of the �nalization function in the Lua plugin is the
following:

void script_plugin_done_lua(script_plugin_state state) {

/* In Lua, a state is a lua_State */

lua_State* L = (lua_State*) state;

/* Terminates the state. Does not affect other environments */

lua_close(L);

}

In Perl, the process, although a tad more elaborate, is essentially the same:

void script_plugin_done_perl(script_perl_state* state) {

/* Some macros assume the interpreter pointer is called my_perl */

PerlInterpreter* my_perl = (PerlInterpreter*) state;

/* Some operations act on the �current state�,

so the PERL_SET_CONTEXT macro must be used to

switch the active interpreter */

PERL_SET_CONTEXT(my_perl);

/* This flag must be activated so that the cleaning

of an environment is complete, which is needed

when there may be more than one active interpreter */

PL_perl_destruct_level = 1;

/* Terminating the interpreter */

perl_destruct(my_perl);

perl_free(my_perl);

}

In Python and Ruby, plugins need to keep track of the number of active states to
deallocate the virtual machine only when it reaches zero. Besides, both in Ruby and Python
there are no features in their APIs (or in the languages, actually) to remove, respectively,
classes and modules. In Ruby, we could assign nil to the constant that represents the
class which describes the virtual environment, but after that it is not possible to de�ne
a new class in its place: both rb_define_class through C and class <Name> through
Ruby indicating that the value was already de�ned with another type. Since Ruby features

4.2. IMPLEMENTATION OF PLUGINS 77

open classes, a class <Name> construct for an already existing <Name> is understood
as a resumption of the class description, and not as the rede�nition of <Name>. Python,
on its turn, does not provide API features for unloading modules, but allows assigning
None to the global referring the module. The module can then be imported again, but
the same instance, stored internally by Python, will be returned. The following interactive
command-line session allows us to observe this behavior, which happens both directly in
Python as well as through the C API:

> > > import sys

> > > sys.foo = "hello"

> > > sys.foo

'hello'

> > > sys = None

> > > import sys

> > > sys.foo

'hello'

Thus, data structures referring to LibScript states are not terminated in LibScript-
Python and LibScript-Ruby. This is the implementation of the termination routine in the
Ruby plugin:

void script_plugin_done_ruby(script_ruby_state state) {

/* Decrements the state counter, a static global variable */

script_ruby_state_count--;

/* Terminates the interpreter if this is the last state */

if (script_ruby_state_count == 0)

ruby_finalize();

}

The Python implementation is basically the same:

void script_plugin_done_python(script_python_state state) {

script_python_state_count--;

if (script_python_state_count == 0)

Py_Finalize();

}

4.2.3 Passing arguments

Data transfer between the main library and plugins is concentrated in two operations:
one to pass the contents of the LibScript argument bu�er to the virtual machine data
space and another to perform the inverse operation. The �rst one is used for passing
input parameters when scripting language functions are called from C and for obtaining
return values when the scripting language makes calls that are handled by C. The second
operation, complementarily, is used for �lling return values when C calls the scripting
language and for input parameters when a scripting language call is handled by C code.

In the implementation of LibScript-Lua, the script_lua_stack_to_buffer function
converts the contents of the Lua stack to the LibScript argument bu�er. The plugin

78 CHAPTER 4. CASE STUDY: LIBSCRIPT

function responsible for invoking Lua functions from C, script_plugin_call_lua, uses
script_lua_stack_to_buffer to store in the LibScript bu�er return values of the invoked
Lua function, since these are returned in Lua's virtual stack. When Lua code calls functions
implemented in C or some other plugin, script_lua_stack_to_buffer is used to convert
the function's input parameters, also retrieved through the virtual stack. Below, we see
the implementation of this function:

static void script_lua_stack_to_buffer(script_env* env, lua_State *L) {

int nargs; int i;

nargs = lua_gettop(L); /* Number of elements in the Lua stack */

script_reset_buffer(env); /* Empties the LibScript buffer */

for (i = 1; i <= nargs; i++) {

/* Checks the Lua type of element in stack position i */

/* and for each type, convert the element and store in the buffer */

switch(lua_type(L, i)) {

case LUA_TNUMBER:

script_put_double(env, i-1, lua_tonumber(L, i)); break;

case LUA_TSTRING:

script_put_string(env, i-1, lua_tostring(L, i)); break;

case LUA_TBOOLEAN:

script_put_bool(env, i-1, lua_toboolean(L, i)); break;

default:

/* Unhandled types are replaced by zero */

script_put_double(env, i-1, 0);

}

}

}

We assume in LibScript C-format strings: the script_put_string function copies the
given string up to the �rst null character. Thus, when obtaining strings from languages
that allow arbitrary contents, these will be truncated in case they contain nulls. Because
of that, in the Lua plugin we use directly the lua_tostring function, and not the more
general lua_tolstring (which also returns the bu�er size). This design decision coincides
with the goal explained earlier of restricting the main library API to features available in
all languages.

Values of unknown types are replaced by zero, which keeps the position of the other
elements in the arguments list unaltered. We chose not to signal error is this situation
to avoid raising exceptions here, which would complicate our presentation. Capture and
propagation of errors will be seen in Section 4.2.5.

The second data transfer function from LibScript-Lua, script_lua_buffer_to_stack,
obtains values from the LibScript bu�er and inserts them into Lua's virtual stack. This
function is used to pass input arguments to Lua in script_plugin_call_lua and to pass
to Lua return values from the script_call function, which is internally invoked by the
plugin when Lua invokes a C function.

static int script_lua_buffer_to_stack(script_env* env, lua_State *L) {

int i; char* s;

4.2. IMPLEMENTATION OF PLUGINS 79

int len = script_buffer_len(env); /* Number of elements in the buffer */

for (i = 0; i < len; i++) {

/* Checks the type of element in buffer position i */

/* and for each type, obtains it and inserts in in Lua's stack */

type = script_get_type(env, i);

switch (type) {

case SCRIPT_DOUBLE:

lua_pushnumber(L, script_get_double(env, i)); break;

case SCRIPT_STRING:

s = script_get_string(env, i); /* The string belongs to the caller */

lua_pushstring(L, s);

free(s); /* Frees the string, since Lua stores its own copy */

break;

case SCRIPT_BOOL:

lua_pushboolean(L, script_get_bool(env, i)); break;

}

}

return len;

}

In LibScript-Python, it was not possible to concentrate data transfer operations in
two functions only. Each operation had to be split in two parts. The conversion of data
sent from Python to the LibScript bu�er was split into script_python_put_object and
script_python_tuple_to_buffer. The �rst function converts a single value Python and
inserts it in the requested bu�er position:

static void script_python_put_object(script_env* env, int i, PyObject* o) {

if (PyString_Check(o))

script_put_string(env, i, PyString_AS_STRING(o));

else if (PyInt_Check(o))

script_put_int(env, i, PyInt_AS_LONG(o));

else if (PyLong_Check(o))

script_put_double(env, i, PyLong_AsDouble(o));

else if (PyFloat_Check(o))

script_put_double(env, i, PyFloat_AS_DOUBLE(o));

else if (PyBool_Check(o))

script_put_bool(env, i, o == Py_True ? 1 : 0);

else

script_put_int(env, i, 0);

}

It is important to note that Python types PyInt and PyLong do not correspond to
C types int and long: PyInt is the integer type corresponding to the machine word
size (analogous to int), but a PyLong is an arbitrary-precision integer. In LibScript, we
represent PyLongs as doubles. The LibScript API o�ers the script_put_int function as
a convenience, but internally, as it happens for example in Lua, all numbers are stored as
doubles.

The second function, script_python_tuple_to_buffer, inserts elements of a tuple in
the bu�er:

80 CHAPTER 4. CASE STUDY: LIBSCRIPT

static void script_python_tuple_to_buffer(script_env* env, PyObject* tuple) {

int i;

int len = PyTuple_GET_SIZE(tuple); /* Number of elements in the tuple */

script_reset_buffer(env); /* Empties the LibScript buffer */

for (i = 0; i < len; i++) {

PyObject* o = PyTuple_GET_ITEM(tuple, i); /* Get a tuple element */

script_python_put_object(env, i, o); /* Insert it in the buffer */

}

}

The inverse operation, for transferring data from the LibScript bu�er to Python, is
also implemented in two functions, one handling objects individually and another han-
dling tuples. The script_get_object function converts a bu�er element to an equivalent
PyObject:

static PyObject* script_python_get_object(script_env* env, int i) {

PyObject* ret; char* s;

switch (script_get_type(env, i)) {

case SCRIPT_DOUBLE:

return PyFloat_FromDouble(script_get_double(env, i));

case SCRIPT_STRING:

s = script_get_string(env, i);

PyObject* ret = PyString_FromString(s);

free(s);

return ret;

case SCRIPT_BOOL:

return PyBool_FromLong(script_get_bool(env, i));

}

}

The script_python_buffer_to_tuple function generates a tuple containing every el-
ement of the LibScript bu�er:

static PyObject* script_python_buffer_to_tuple(script_env* env) {

int i;

int len = script_buffer_len(env);

PyObject* ret = PyTuple_New(len);

for(i = 0; i < len; i++) {

PyObject* o = script_python_get_object(env, i);

PyTuple_SetItem(ret, i, o);

}

return ret;

}

This way, these two pairs of functions perform functions equivalent to script_lua_-

stack_to_buffer and script_lua_buffer_to_stack do in the Lua script. They were
separated in two parts because of the model for return values in Python functions: for the
case of multiple return values, they are returned as a tuple; for single values, they are passed
directly. This is made evident in the following excerpt of the script_plugin_call_python
function:

4.2. IMPLEMENTATION OF PLUGINS 81

PyObject *ret, *args;

/* ... */

args = script_python_buffer_to_tuple(env); /* Get input parameters */

ret = PyEval_CallObject(func, args); /* Call a Python function */

/* ... */

if (ret == Py_None) /* If the function returned no values */

script_reset_buffer(env); /* Just empty the LibScript buffer */

else if (PyTuple_Check(ret)) /* If a tuple was returned */

script_python_tuple_to_buffer(env, ret); /* Insert its elements in the buffer */

else /* If another type was returned */

script_python_put_object(env, 0, ret); /* Insert it as the only element */

In the plugin handler for calls to external functions, communication in the opposite
direction follows a similar logic:

script_python_tuple_to_buffer(env, args); /* Get input parameters */

err = script_call(env, fn_name); /* Call a function through LibScript */

/* ... */

switch(script_buffer_len(env)) {

case 0: /* If the function returned no values */

Py_RETURN_NONE; /* Return the Python value 'None' */

case 1: /* If a single value was returned */

return script_python_get_object(env, 0); /* Convert it and return it */

default: /* If more than one value was returned */

return script_python_buffer_to_tuple(env); /* Return them in a tuple */

}

Like in Python, Ruby functions return multiple values by wrapping them in an aggre-
gate type. This way, data transfer operations in LibScript-Ruby are also split into pairs
of functions, one converting a bu�er value and another operating on a Ruby array. The
analogous function to script_python_put_object is script_ruby_put_value:

static void script_ruby_put_value(script_env* env, int i, VALUE arg) {

switch (TYPE(arg)) {

case T_FLOAT:

case T_FIXNUM:

case T_BIGNUM:

script_put_double(env, i, NUM2DBL(arg)); break;

case T_STRING:

script_put_string(env, i, StringValuePtr(arg)); break;

case T_TRUE:

script_put_bool(env, i, 1); break;

case T_FALSE:

script_put_bool(env, i, 0); break;

default:

script_put_int(env, i, 0);

}

}

Here, some problems of the Ruby API become apparent. Besides the inconsistency in
the naming of object conversion function names, the meaning of the value returned by

82 CHAPTER 4. CASE STUDY: LIBSCRIPT

the TYPE macro can only be understood through the internal representation of VALUEs in
Ruby's implementation, and not through the type hierarchy of language objects. Classes
that has special handling in the internal structure of VALUEs have constants associated
to them, such as T_FLOAT and T_STRING; the rest are identi�ed only as T_OBJECTs. The
use of T_TRUE and T_FALSE may lead to think that some speci�c values also return special
results for TYPE. Indeed, these values are de�ned as VALUEs that do not correspond to Ruby
heap indices and are handled especially by the implementation. From the point of view
of Ruby code, however, this classi�cation of values true and false as separate types in the
C API is justi�ed by de�ning them as singletons of classes TrueClass and FalseClass,
an approach probably in�uenced by Smalltalk. Unlike Smalltalk, though, where True and
False are subclasses of Boolean, in Ruby TrueClass and FalseClass are direct subclasses
of Object. This brings the inconvenience that checking if a type matches a boolean value
two tests are needed.

Like LibScript-Python has a function to store in the bu�er elements from a tuple,
LibScript-Ruby has a function to store elements of an array:

static void script_ruby_array_to_buffer(script_env* env, VALUE array) {

int i;

int len = RARRAY(array)->len;

script_reset_buffer(env);

for (i = 0; i < len; i++) {

VALUE o = rb_ary_entry(array, i);

script_ruby_put_value(env, i, o);

}

}

Ruby does not have a function in its C API to return the size of an array; instead, the
internal structure of VALUE is exposed through the RARRAY macro (which just wraps a cast).

Operations for converting values from the LibScript bu�er to Ruby are also similar to
those implemented in the Python plugin. Again, where in Python there is a function for
manipulating tuples, we have in Ruby a function that operates on arrays:

static VALUE script_ruby_get_value(script_env* env, int i) {

VALUE ret; char* s;

switch (script_get_type(env, i)) {

case SCRIPT_DOUBLE:

return rb_float_new(script_get_double(env, i));

case SCRIPT_STRING:

s = script_get_string(env, i);

ret = rb_str_new2(s);

free(s);

return ret;

case SCRIPT_BOOL:

return script_get_bool(env, i) ? Qtrue : Qfalse;

}

}

4.2. IMPLEMENTATION OF PLUGINS 83

static VALUE script_ruby_buffer_to_array(script_env* env) {

int i;

int len = script_buffer_len(env);

VALUE ret = rb_ary_new2(len);

for (i = 0; i < len; i++) {

VALUE o = script_ruby_get_value(env, i);

rb_ary_store(ret, i, o);

}

return ret;

}

In a similar way to the Python plugin, the implementation of Ruby function calls from
LibScript uses the script_ruby_buffer_to_array to convert input parameters and func-
tions script_ruby_put_value or script_ruby_array_to_buffer to convert the return
value, depending on the number of values returned (or, more precisely, if the function has
returned an array or not). In calls to LibScript functions from Ruby, input parameters
are converted with script_ruby_array_to_buffer and return values are converted with
script_ruby_get_value or script_ruby_buffer_to_array.

In the Perl plugin, we have three functions: data transfer from the stack to the Lib-
Script bu�er was implemented in a single function like in Lua, but transfer in the opposite
direction had to be split in two functions, like in Python and Ruby. This asymmetry comes
from the fact that handling of return values is wrapped by the XS pre-processor through
the RETVAL variable; so, in this situation we cannot manipulate the stack directly, but only
pass SVs as output values.

Transferring data from the Perl stack to the LibScript bu�er is reasonably simple:

void script_perl_stack_to_buffer(pTHX_ int ax, script_env* env,

int count, int offset) {

int i;

script_reset_buffer(env);

for (i = 0; i < count; i++) {

/* Obtain a pointer to a SV from Perl's stack */

SV* o = ST(offset+i);

if (SvIOK(o))

script_put_int(env, i, SvIV(o));

else if (SvNOK(o))

script_put_double(env, i, SvNV(o));

else if (SvPOK(o))

script_put_string(env, i, SvPV_nolen(o));

else

script_put_int(env, i, 0);

}

}

This functions' input parameters deserve mention. Initially, we have the pTHX_ macro.
This macro was added to the API when Perl started allowing multiple simultaneous in-
terpreters per process: API functions were transformed into macros that wrap this �rst
argument. For example, eval_sv can be called as Perl_eval_sv, passing the aTHX_ macro

84 CHAPTER 4. CASE STUDY: LIBSCRIPT

as an initial parameter. In general the use of these macros remains implicit, but when
writing functions that use the Perl API it becomes necessary to use the pTHX_ macro in
declarations5, to propagate interpreter state information through function calls, and aTHX_

in calls.
Another symptom that the Perl API was designed more for internal use of the XS pre-

processor than for direct manipulation shows in the second argument, ax. Some macros
assume the existence of this value, which is not propagated by pTHX_, but is implicitly
declared when functions are wrapped with XS. The API seems to assume that an XS
function will not invoke another C function which also uses the API. We had to propagate
the variable ourselves (which is mentioned in the documentation, but only as �the 'ax'
variable� [30], with no explanations of its purpose).

The other two parameters, count and o�set, are needed due to the di�erent ways that
the information they represent are obtained in the two contexts where this function is used.
In other plugins, we can obtain the number of input elements in a uniform way (checking
the number of elements in a Python tuple, for example). In Perl, in the two situations
where the function is called, the number of elements to be read from the stack should be
obtained in di�erent ways, and because of that we pass it as the count parameter. In the
routine that calls LibScript functions, implemented in the XS �le, the size of the stack
is obtained through a special variable, items. When calling Perl functions, the value of
count is obtained as the result of the invocation function, Perl_call_pv.

The start position from where to obtain elements (offset) also varies. Inside the XS
function, input parameters start from position 2, because LibScript passes the environment
pointer and function name in the �rst two arguments. In calls to Perl functions, the value
of o�set is zero because, as seen in the protocol for invocation of Perl functions discussed
in Section 3.3.5, the stack bottom is adjusted after the function call by the SPAGAIN macro.

Conversion of values from the LibScript bu�er to the Perl stack is implemented in two
functions, one that generates a single SV and another that pushes all elements:

SV* script_perl_get_sv(pTHX_ script_env* env, int i) {

switch (script_get_type(env, i)) {

case SCRIPT_DOUBLE: return newSVnv(script_get_double(env, i));

/* 0 indicates that the size of the string should be computed by Perl */

case SCRIPT_STRING: return newSVpv(script_get_string(env, i), 0);

case SCRIPT_BOOL: return newSViv(script_get_bool(env, i));

}

}

SV** script_perl_buffer_to_stack(pTHX_ SV** sp, script_env* env) {

int i;

int len = script_buffer_len(env);

for (i = 0; i < len; i++) {

XPUSHs(sv_2mortal(script_perl_get_sv(aTHX_ env, i)));

}

5The pTHX_ is used without a comma separating it from the following argument. When it is the only
argument, one should use pTHX.

4.2. IMPLEMENTATION OF PLUGINS 85

return sp;

}

Again, a variable created internally by Perl had to be propagated explicitly: sp, the
stack pointer. This variable is referenced within the XPUSHs macro. Besides, as XPUSHs

can resize the stack, we need to return the updated value of sp back to the caller. Apart
from that, generation of SVs, their registration as mortal variables and their insertion in
the stack happens as usual, as presented in Section 3.3.5.

Like in the other plugins, the transfer of input parameters in LibScript-Perl, both for
Perl functions and for functions called through LibScript, is made calling the conversion
function that acts on the bu�er as a whole: when calling Perl functions we use script_-
perl_buffer_to_stack and for functions called using LibScript, script_perl_stack_-
to_buffer. For handling return values for Perl functions, we were able to use directly the
script_perl_stack_to_buffer function, not unlike it was done in LibScript-Lua. For
the return value of functions called using LibScript, however, we need to deal with the
special XS variable RETVAL and with the di�erent call contexts of Perl. The excerpt below
illustrates the handling of return values in this case:

err = script_call(env, function_name);

/* ... (error handling omitted) ... */

switch (GIMME_V) {

case G_SCALAR:

/* Return the first item of the buffer */

RETVAL = script_perl_get_sv(aTHX_ env, 0);

break;

case G_ARRAY:

len = script_buffer_len(env);

/* Create an array */

RETVAL = (SV*)newAV();

/* Returned arrays have to be marked as mortal */

sv_2mortal((SV*)RETVAL);

/* Insert the contents of the buffer in the array */

for (i = 0; i < len; i++)

av_push((AV*)RETVAL, script_perl_get_sv(aTHX_ env, i));

break;

case G_VOID:

/* As the return value is discarded in void contexts, */

/* we return the Perl constant undef */

RETVAL = &PL_sv_undef;

break;

}

4.2.4 Function calls

In LibScript plugins, functions implemented externally (in C or other plugins) are
located only in the moment when they are called. The goal here, besides optimizing
initialization time and memory consumption in the scripting language runtime environment

86 CHAPTER 4. CASE STUDY: LIBSCRIPT

(avoiding the declaration of functions that will not be used), is to allow the location of
functions declared after the environment's initialization. To allow function resolution in
a dynamic way, it is necessary to capture the access to missing elements in the structure
which describes the virtual environment to the plugin and forward the call to the main
library using script_call. When comparing approaches employed in each plugin to get
this behavior, we can evaluate some meta-programming features provided by each language
and their availability through their APIs.

As seen in Section 4.2.1, in Lua, during plugin initialization, a table is created and
stored in a global variable with the same name as the environment. Functions are inserted
dynamically in this table through a metatable associated to it right after its creation in
script_plugin_init_lua. The __index �eld of this metatable points to a C function in-
ternal to the plugin, script_lua_make_caller, which is then invoked always that a nonex-
istent element is requested in the table. The script_lua_make_caller function creates a
C closure, which consists of another C function internal to the plugin (script_lua_caller)
and the name of the requested function. This closure is associated to the proper entry in
the environment table. This way, calls to functions implemented externally are resolved
by script_lua_caller, which will pass them on to script_call.

In the Python plugin, when calling a function in the virtual environment module, the
module's __getattro callback, de�ned as the internal function script_python_get, is
called. This function searches for an entry in the module's dictionary and, if it is not
found, creates an object of the script_python_object type, and returns it as the re-
sult of __getattro. This data type is declared in the plugin as a Python class, whose
instances contain a pointer to the virtual environment and a C string with the name
of the function they represent. These objects have their __call callback de�ned as
script_python_caller, a function that, like script_lua_caller, converts its received
parameters to the LibScript bu�er, invokes script_call and converts the return values
back to Python. Therefore, objects of this type are functors, and behave similarly to the
closure de�ned in the Lua plugin.

Function resolution is implemented in Ruby using the method_missing method, which
is a language-de�ned fallback, always called when a nonexistent method is invoked in a
class. Unlike __getattro in Python and __index in Lua, which are attribute access han-
dlers and therefore need to return an object which is called in a later step, method_missing
handles calls directly. Hence, when invoked, method_missing receives the name of the re-
quested method and the given parameters and forwards them to script_call.

In the Perl plugin, like in Lua and Python, there is also a C function responsible
for invoking script_call and converting input parameters and return values. So that
this function, script_perl_caller, can be exposed to the Perl interpreter, it is imple-
mented in an XS module. Once the module is loaded the function is visible in Perl as
LibScript::caller. Dynamic resolution of functions from the Perl package representing
the LibScript virtual environment is done using the AUTOLOAD Perl function, which behaves
like method_missing in Ruby, capturing calls to missing functions. In the plugin's initial-
ization function, Perl code is executed to load the extension module, initialize the environ-
ment package and insert in it an AUTOLOAD function which will call LibScript::caller:

4.2. IMPLEMENTATION OF PLUGINS 87

snprintf(code, LEN_CODE,

"bootstrap LibScript;" /* Initializes the extension module */

"package %s;" /* Declare the environment package */

"$LibScript::env = %p;" /* Store the environment pointer in Perl */

"sub AUTOLOAD {"

"our $AUTOLOAD;"

/* Extract the method name from the qualified �package::method� name */

"$AUTOLOAD =~ s/[^:]*:://;"

/* Invokes caller passing the environment pointer, */

/* the method name, and the argument array */

"LibScript::caller(%p, $AUTOLOAD, @_);"

"}",

state->package, env, env);

/* Evaluate the code string:

TRUE indicates that any errors should be reported. */

Perl_eval_pv(my_perl, code, TRUE);

4.2.5 Capturing errors

Plugins should capture the occurrence of runtime errors when executing strings of
code and function calls. In Lua, both operations are performed using the lua_pcall

function, which indicates errors in its return value. In case of errors, the error message
is obtained from the top of Lua's virtual stack and propagated to the main library using
script_set_error_message. In case of execution of strings of code, compilation errors are
detected through the return value of luaL_loadstring, which loads code to be executed
by lua_pcall.

In Python, the occurrence of errors is signalled by the return value of functions for
executing strings, PyRun_SimpleString, and for calling functions, PyEval_CallObject.
In case of errors, we call the PyErr_Occurred function which returns a Python object
representing the exception. The error message is obtained converting this object to a
Python string using PyObject_Str, and �nally to a C string with PyString_AS_STRING.

In Perl, errors are signalled in the special variable $@; its contents can be checked from
the C API with the ERRSV macro. The presence of errors is tested with SvTRUE(ERRSV),
and the error message can be obtained converting this variable to a C string with the SvPV
macro.

Ruby provides a function for executing strings of code, rb_eval_string, and a variant
that captures errors and signals them through its return value, rb_eval_string_protect.
However, for method calls, there is no protected version of rb_funcall. The only function
provided by the API to protect calls, rb_protect, does not get as a parameter a Ruby
method, but a C function instead. To call Ruby methods in a protected way, we had to
write a C function that wraps the call:

static VALUE script_ruby_pcall(VALUE args) {

/* Extract the method name from the arguments array */

ID fn_id = SYM2ID(rb_ary_pop(args));

/* Extract the class from the arguments array */

88 CHAPTER 4. CASE STUDY: LIBSCRIPT

VALUE klass = rb_ary_pop(args);

return rb_apply(klass, fn_id, args);

}

and then invoke it using rb_protect:

/* Insert the class in the arguments array */

rb_ary_push(args, klass);

/* Insert the method name in the arguments array */

rb_ary_push(args, ID2SYM(rb_intern(fn)));

/* Call the wrapper function */

ret = rb_protect(script_ruby_pcall, args, &error);

if (error) {

script_reset_buffer(env);

script_set_error_message(env, StringValuePtr(ruby_errinfo));

ruby_errinfo = Qnil;

return SCRIPT_ERRLANGRUN;

}

As rb_protect passes a single VALUE to the C function, we had to store the class,
method identi�er and all input parameters of the Ruby method to be invoked in a Ruby
array. The occurrence of errors is signalled in a variable passed as the third parameter of
rb_protect, and the error message is obtained in the global VALUE ruby_errinfo.

4.3 Conclusions

The case study presented here illustrated, through the implementation of plugins, the
process of embedding four scripting languages interfacing a given C API. Several aspects
of the interaction between C and scripting languages were covered, contemplating initial-
ization and termination of their runtime environments, passing data and calling functions
in both directions and signalling errors. From that, we can make some observations on the
adequacy of those languages as embedded environments in applications.

In many applications it is important to have isolation between each script executed,
such as for example, when one scripts from di�erent customers running in a web server.
As we have seen, Lua and Perl allow launching multiple runtime environments, which
gives isolation guarantees. Python and Ruby, on the other hand, allow only a single state,
reducing their applicability for scenarios where scripts need to run isolated from each
other6. These two languages have yet another problem: in some cases it is not possible
to bring its data space back to the original state during the execution of an application.
In Python, imported modules cannot be unloaded. In Ruby, a class cannot be rede�ned
(only extended) and IDs are not collected.

6In Python it is possible to alternate the globals table during the execution of di�erent threads, which
o�ers an alternative, even if less than straightforward, to obtain isolation. Even then, the global state
shared by extension modules in the same.

4.3. CONCLUSIONS 89

In the implementation of the Perl plugin it became evident that its API was not designed
for embedding the interpreter in applications. Besides demanding the development of an
extension module so that Perl code can access C functions, we observed here that its
API is incomplete with regard to its use as an embedded language. Many macros were
developed assuming they would always be invoked from code written in XS �les, or even by
code generated by the XS pre-processor. This is con�rmed by the need to pass additional
undocumented parameters so that macros work, as presented in Section 4.2.3.

Lua, on its turn, has shown to be appropriate as an embedded language, not sharing
the limitations described here about other languages. Besides, it features a simple API,
which handles language constructs in a complete and orthogonal way, which is due both
to the focus of its implementation as an embedded language, and to the minimalist design
of the language itself. Even in small projects like the one presented here, which exercises
only a small fraction of the APIs, we could observe that aspects where languages de�ne
special cases or have less uniformity leak through their C APIs. Both in Python and Ruby,
functions returning multiple values cause implicit conversions to aggregate types (lists and
arrays). In a similar way, multiple results are represented in Perl as array contexts. In
their respective LibScript plugins, these features had to be handled especially. In the Lua
plugin, in contrast, handling a single return value is no di�erent from handling multiple
values, like it happens in native language code.

90 CHAPTER 4. CASE STUDY: LIBSCRIPT

Chapter 5

Conclusions

Choosing a scripting language depends on a series of factors, many of them relative
to the language itself, others relative to its implementation. When we deal with multi-
language development scenarios, an aspect that should not be neglected is the design of
interfaces between languages. Be it extending the scripting language through C code, or
making a C application extensible through a scripting language, the API o�ered by the
language has a fundamental role, often in�uencing the design of the application.

This work discussed the main issues faced in the integration between C code and the
runtime environment of a scripting language. We presented how the APIs of �ve languages
handle these issues, indicating positive and negative points of the various approaches used.
We performed a practical comparison of the use of these APIs through a case study where
scripting languages were embedded to C libraries exporting one single interface. The
implementation consists of a generic scripting library, called LibScript, and a series of
plugins which interface di�erent languages. We were able, this way, to observe how they
handle important aspects related to embedded languages, such as passing data, function
calls between two languages, error handling and isolation of runtime environments within
applications.

Although the same general problems, such as data transfer, function registration and
calling, are common to di�erent usage scenarios of a scripting language API, applications
embedding a virtual machine tend to demand more from the API than libraries implement-
ing extension modules. This point is illustrated by the di�culties imposed by the Python
API both in the access to global variables and registration of global functions; and, more
evidently, by the complexity of Perl's API for function calls.

The fact that the Python API makes the use of global variables and functions di�cult,
favoring the use of modules, can be justi�ed as a way to promote a more structured
programming discipline. This is interesting when using the API for developing extension
modules, given that using global variables and functions is extremely harmful in those
cases, as it would pollute the namespace of Python applications. For the case where the
language is embedded to provide scripting support for a C application, the absence of a
convenient way to de�ne global functions in the scripts' namespace is questionable.

The approach adopted by Perl, using a pre-processor which generates automatically

91

92 CHAPTER 5. CONCLUSIONS

code for converting data when passing parameters and return values, has shown to be
inadequate for scenarios involving embedded interpreters. Although the use of a pre-
processor simpli�es the simpler cases of declaration of C functions, the lack of a well-
de�ned API for handling data transfer between the Perl interpreter and C code becomes
apparent in more elaborate cases. Two of these situations happened in our case study:
when receiving vararg parameters and when handling return values supporting multiple
call contexts. Both demanded manipulation of low-level structures and constructs which
the pre-processor aims to hide.

Interesting observations resulted from the comparison of the Java API with that from
the other four scripting languages, given than, although it shares several traits with those
languages, Java is not considered a scripting language. While static typing does reduce
considerably the need for explicit data conversion in C code for primitive types of the lan-
guage, in practice type checking for objects and the linking of �elds and methods happens
in a dynamic way, as these have to be performed at runtime by the JNI. Thus, regarding
interaction of the virtual machine with C, advantages brought by static typing are re-
duced. Besides, dynamic resolution of �elds and methods through C has subtle di�erences
in behavior when compared to what occurs in native Java code, which can be a source of
programmer errors.

When comparing APIs, we considered only their interfaces, making a qualitative usabil-
ity analysis of each of them from the perspective of a C programmer, and not a quantitative
analysis of their implementations. The performance cost added by code which performs
bridging between two languages, for example, cannot be disconsidered. Many design de-
cisions from an API are in�uenced by implementation requirements such as portability or
performance restrictions. For example, automatic handling of scope of VALUEs in Ruby,
scanning the C stack, brings great convenience to the programmer, but reduces the porta-
bility of its implementation.

The disparity between languages with regard to the availability of documentation also
deserves mention. Java, Python and Lua feature extensive documentation, both for the
languages themselves and to their C APIs. For those languages, we were able to largely
base our study and the implementation of examples for the case study in the provided
documentation. The documentation of Ruby relative to its C API is sparser; in [40] only
part of its public API is covered. We had to make use of undocumented functions for tasks
as fundamental as freeing global references registered through C. During the development of
the Ruby plugin for the case study, we referred frequently to its source code to understand
aspects which are not covered by the documentation about the behavior of its public
functions. The documentation for Perl's C API is also incomplete, spread over several
Unix manual pages included in its distribution, and in certain cases, out-of-date. To
understand the various protocols involved in the practical use of the Perl API, we had to
resort to the source code of applications using it.

The balance between simplicity and convenience is another recurring theme when com-
paring APIs. Python's extensive API, containing 656 public functions, contrasts with the
113 functions exposed by the Lua API (79 from the core API, 34 in its auxiliary API). In
many situations, Python API functions abbreviate two, three ore even more calls, as in the

93

case of powerful functions such as Py_BuildValue and PyObject_CallFunction, resulting
in short and readable C code. The approach defended by Lua is that of a minimalistic
API, o�ering mechanisms with which more elaborate functionality can be built. In fact, in
[15] a C function equivalent to PyObject_CallFunction is presented, using the Lua API.

Ruby exports 530 functions in its header and Perl 1209, but as only a small fraction of
those is documented, it is hard to evaluate the size of their �public API� and how many of
these are just function for internal use exposed in their headers1. This also shows that the
documentation is not relevant as support material for development, but it also indicates
how well-de�ned an API is.

The Java API is well-documented, like that from Python and Lua, but the number of
exported function is not a good parameter for comparison with the other APIs as, because
of statically de�ned types, many functions have a variant for each primitive type. Java
exports its API as a structure containing function pointers; 228 functions in total are
exported in this structure.

Another aspect that could be observed in this work is that the consistency of an API
depends greatly on the consistency of the language it exposes. Constructions where a
language lacks orthogonality, such as code blocks in Ruby or the di�erences when manip-
ulating scalar and array values in Perl, end up increasing the complexity of the API and
demand from the programmer speci�c handling in C code.

As possibilities for future work, this work can be extended through the study of other
aspects of scripting language. A possible focus is the performance impact of di�erent API
designs in multi-language applications. Another is the relation between the design of a
virtual machine and its respective API. Additionally, another perspective for future work
lies in the continued development of the LibScript library. Possibilities include adding new
plugins, review its API and exercise it by embedding the library in actual applications.
LibScript and the four plugins implemented in this work are free software and are available
for download at http://libscript.sourceforge.net.

1Some functions are marked as being for internal use only, but most of them have no indication what-
soever.

94 CHAPTER 5. CONCLUSIONS

Bibliography

[1] D. M. Beazley. SWIG: an easy to use tool for integrating scripting languages with C
and C++. In USENIX Association, editor, 4th Annual Tcl/Tk Workshop '96, pages
129�139, Berkeley, CA, USA, July 1996. USENIX.

[2] Nick Benton and Andrew Kennedy. Interlanguage working without tears: blending
SML with Java. In ICFP '99: Proceedings of the fourth ACM SIGPLAN international
conference on Functional programming, pages 126�137, New York, NY, USA, 1999.
ACM Press.

[3] Don Box and Chris Sells. Essential .NET, Volume I: The Common Language Runtime.
Addison-Wesley, Boston, MA, USA, 2002.

[4] Barbara Chapman, Matthew Haines, Piyush Mehrotra, Hans Zima, and John Van
Rosendale. Opus: A coordination language for multidisciplinary applications. Scien-
ti�c Programming, 6(4):345�362, Winter 1997.

[5] Suzanne Collin, Dominique Colnet, and Olivier Zendra. Type inference for late bind-
ing: The SmallEi�el compiler. In Joint Modular Languages Conference, JMLC'97,
volume 1204 of Lecture Notes in Computer Sciences, pages 67�81. Springer Verlag,
1997.

[6] Melvin E. Conway. Proposal for an UNCOL. Communications of the ACM, 1(10):5�8,
1958.

[7] Ana Lucia de Moura, Noemi Rodriguez, and Roberto Ierusalimschy. Coroutines in
Lua. Journal of Universal Computer Science, 10(7):910�925, July 2004.

[8] Zdenek Dvorak. Gimpli�cation improvements. In GCC Developers' Summit, pages
47�56, Ottawa, Canada, June 2005.

[9] Ecma International. C++/CLI Language Speci�cation, 2005. Standard ECMA-372.

[10] Greg Ewing. Pyrex - a language for writing Python extension modules, 2006. http:
//www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/.

95

96 BIBLIOGRAPHY

[11] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. H/Direct: a
binary foreign language interface for Haskell. In ICFP '98: Proceedings of the third
ACM SIGPLAN international conference on Functional programming, pages 153�162,
New York, NY, USA, 1998. ACM Press.

[12] David Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80�112, 1985.

[13] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Speci�-
cation. Addison-Wesley, Boston, MA, USA, 2nd edition, 2000.

[14] Jim Hugunin. Python and Java - the best of both worlds. In Proceedings of the 6th
International Python Conference, pages 11�20, San Jose, CA, USA, October 1997.

[15] Roberto Ierusalimschy. Programming in Lua. Lua.org, 2nd edition, March 2006.

[16] International Organization for Standardization. Ada 95 Reference Manual. The Lan-
guage. The Standard Libraries, January 1995. ANSI/ISO/IEC-8652:1995.

[17] International Organization for Standardization. C# Language Speci�cation, 2006.
ISO/IEC 23270:2003.

[18] Simon L. Peyton Jones, Norman Ramsey, and Fermin Reig. C--: A portable assembly
language that supports garbage collection. In PPDP '99: Proceedings of the Interna-
tional Conference PPDP'99 on Principles and Practice of Declarative Programming,
pages 1�28, London, UK, 1999. Springer-Verlag.

[19] Simon Peyton Jones, Cordelia V. Hall, Kevin Hammond, Will Partain, and Philip
Wadler. The Glasgow Haskell Compiler: a technical overview. In Proc. UK Joint
Framework for Information Technology (JFIT) Technical Conference, pages 249�257,
Keele, Sta�ordshire, UK, March 1993.

[20] KDE.org. KDE developer's corner - Language bindings, October 2006. http://

developer.kde.org/language-bindings/.

[21] Sheng Liang. Java Native Interface: Programmer's Guide and Reference. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[22] Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci�cation. Addison-
Wesley, 2nd edition, April 1999.

[23] Doug MacEachern and Jon Orwant. perlembed(1). Perl 5 Porters, 5.8.8 edition,
January 2006. http://perldoc.perl.org/perlembed.html.

[24] Ariel Manzur and Waldemar Celes. toLua++ reference manual, April 2006. http:

//www.codenix.com/~tolua/tolua++.html.

BIBLIOGRAPHY 97

[25] Paul Marquess. perlcall(1). Perl 5 Porters, 5.8.8 edition, January 2006. http://

perldoc.perl.org/perlcall.html.

[26] John R. Metzner. A graded bibliography on macro systems and extensible languages.
SIGPLAN Not., 14(1):57�64, 1979.

[27] Gustavo Niemeyer. Lunatic Python, July 2006. http://labix.org/lunatic-python.

[28] Object Management Group, Inc., Framingham, MA, USA. The Common Object Re-
quest Broker: Architecture and Speci�cation, Version 3.0, 2002.

[29] Je� Okamoto. perlguts(1). Perl 5 Porters, 5.8.8 edition, January 2006. http://

perldoc.perl.org/perlguts.html.

[30] Je� Okamoto and Dean Roehrich. perlapi(1). Perl 5 Porters, 5.8.8 edition, January
2006. http://perldoc.perl.org/perlapi.html.

[31] John K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, 1994.

[32] John K. Ousterhout. Scripting: Higher-level programming for the 21st century. IEEE
Computer, 31(3):23�30, 1998.

[33] Pearu Peterson, Joaquim R. R. A. Martins, and Juan J. Alonso. Fortran to Python
interface generator with an application to aerospace engineering. In Proceedings of the
9th International Python Conference, Long Beach, CA, USA, March 2001.

[34] Allison Randal, Dan Sugalski, and Loepoid Toetsch. Perl 6 and Parrot Essentials.
O'Reilly Media, Inc., 2nd edition, 2004.

[35] Dean Roehrich. perlxs(1). Perl 5 Porters, 5.8.8 edition, January 2006. http://

perldoc.perl.org/perlxs.html.

[36] Levon Stepanian, Angela Demke Brown, Allan Kielstra, Gita Koblents, and Kevin
Stoodley. Inlining Java native calls at runtime. In VEE '05: Proceedings of the
1st ACM/USENIX international conference on Virtual execution environments, pages
121�131, New York, NY, USA, 2005. ACM Press.

[37] Sun Microsystems. Java Native Interface 5.0 Speci�cation, 5.0 edition, 2003. http:

//java.sun.com/j2se/1.5.0/docs/guide/jni/.

[38] Don Syme and James Margetson. Microsoft F#, 2006. http://research.microsoft.
com/fsharp/.

[39] David Tarditi, Peter Lee, and Anurag Acharya. No assembly required: compiling
standard ML to C. ACM Lett. Program. Lang. Syst., 1(2):161�177, 1992.

[40] David Thomas and Andrew Hunt. Programming Ruby: The Pragmatic Programmer's
Guide. Addison Wesley Longman, Inc., Boston, MA, USA, 2nd edition, 2004.

98 BIBLIOGRAPHY

[41] Reuben Thomas. Lua Technical Note 4 - a thin API for interlanguage working, or
Lua in four easy calls, August 2002. http://www.lua.org/notes/ltn004.html.

[42] Andrew P. Tolmach and Dino Oliva. From ML to Ada: Strongly-typed language
interoperability via source translation. Journal of Functional Programming, 8(4):367�
412, 1998.

[43] Guido van Rossum. Python/C API Reference Manual. Corporation for National
Research Initiatives (CNRI), Reston, VA, USA, 1.5.2 edition, April 1999. http:

//www.python.org/doc/1.5.2/api/api.html.

[44] Guido van Rossum. Extending and Embedding the Python Interpreter, 2.4.3 edition,
March 2006. http://docs.python.org/ext/ext.html.

[45] Guido van Rossum. Python Reference Manual. Python Software Foundation, 2.4.3
edition, March 2006. http://docs.python.org/ref/.

[46] Guido van Rossum. Python/C API Reference Manual. Python Software Foundation,
2.4.3 edition, March 2006. http://docs.python.org/api/api.html.

[47] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O'Reilly, 3rd
edition, July 2000.

[48] Paul R. Wilson. Uniprocessor garbage collection techniques. In Proc. Int. Workshop on
Memory Management, number 637, pages 1�42, Saint-Malo, France, 1992. Springer-
Verlag.

Appendix A

The LibScript API

A.1 Startup and termination

• script_env* script_init(const char* namespace)

Initializes LibScript and returns a pointer to a virtual environment. The namespace
argument indicates the name to be used in structures to be created in the namespace
of virtual machines to represent the virtual environment.

• void script_done(script_env* env)

Terminates the virtual environment.

A.2 Function registration

• typedef script_err (*script_fn)(script_env*)

Type of C functions to be registered in the virtual environment. When exposing
an existing API to LibScript, the function will typically be a wrapper that loads
input parameters from the environment, calls a program function and sends output
parameters back to the environment.

• script_err script_new_function(script_env* env, script_fn fn, const char*

name)

Registers a new C function in the virtual environment.

A.3 Arguments bu�er

• double script_get_double(script_env* env, int index)

int script_get_int(script_env* env, int index)

int script_get_bool(script_env* env, int index)

const char* script_get_string(script_env* env, int index)

Obtain data from the bu�er. These functions should be called by the beginning

99

100 APPENDIX A. THE LIBSCRIPT API

of wrapper functions. For each input parameter a call should be performed. Once
done, one can invoke the SCRIPT_CHECK_INPUTS(env) macro, which terminates the
function with an error code in case any of these function have not found data of the
expected type (the API does not perform automatic conversion between strings and
numbers). In script_get_string, the returned string belongs to the caller, which
becomes responsible for deallocating it.

• script_type script_get_type(script_env* env, int index)

int script_buffer_len(script_env* env)

These functions allow writing C functions that perform type checking and verify
the number of arguments at runtime. The script_get_type function obtains the
type of the requested bu�er element and script_buffer_len returns the number of
arguments in the bu�er.

• void script_put_double(script_env* env, int index, double value)

void script_put_int(script_env* env, int index, int value)

void script_put_bool(script_env* env, int index, int value)

void script_put_string(script_env* env, int index, const char* value)

Insert data in the bu�er. By the end of a function, return values should be passed
with calls to these functions and a SCRIPT_OK error code as the return value of the
C function.

• void script_reset_buffer(script_env* env)

Empties the bu�er.

A.4 Running code

• script_err script_run(script_env* env, const char* language, const char*

code)

Runs a string of code in a given language. If necessary, the appropriate plugin is
loaded and initialized.

• script_err script_run_file(script_env* env, const char* filename)

Convenience function; loads the contents of a �le and runs it with script_run.

• script_err script_call(script_env* env, const char* fn)

Requests the execution of a function in some of the registered plugins. Input pa-
rameters should be passed previously with calls to the script_put_* functions; re-
turn values can be obtained with script_get_*. Initially, the environment's table
of C functions is consulted. If there is no function de�ned in C, plugins are con-
sulted in the same order as they were implicitly initialized through script_run or
script_run_file: functions registered in each plugin's representation of the virtual
environment are available through script_call.

A.5. API EXPORTED BY PLUGINS 101

• script_err script_error(script_env* env)

const char* script_error_message(script_env* env)

void script_set_error_message(script_env* env, const char* message)

Obtain the most recent error code and message from an environment. After calling
script_error, the error code is reset back to SCRIPT_OK. The error message is not
reset after being checked. The script_set_error_message function de�nes a new
value for the environment's error message. This allows the plugin propagating to the
application error messages from the virtual machine.

• const char* script_get_namespace(script_env* env)

Returns the name of the namespace registered with script_init.

A.5 API exported by plugins

Calls to plugins that implement interfaces to di�erent virtual machines are performed
internally by the main library, which expects to �nd in plugins the following functions:

• script_plugin_state script_plugin_init_language(script_env* env)

Responsible for initializing a plugin. During initialization, the virtual environment
returns a script_plugin_state to the main library, which is the opaque represen-
tation of its virtual state. The contents of this representation vary from language to
language, but the basic principle is that two data should be available from this value:
a reference to the LibScript virtual environment, so that the plugin can make calls
to the main library, and an identi�er that allows the plugin to access the language-
speci�c data structure that represents the namespace of LibScript-accessible func-
tions.

• script_err script_plugin_run_language(script_plugin_state st, char* text)

Sends code for execution in the virtual machine. This function is used internally by
script_run and script_run_file. It should return SCRIPT_OK in case of success,
SCRIPT_ERRLANGCOMP for compile errors or SCRIPT_ERRLANGRUN for runtime errors,
preferably de�ning an error message with script_set_error_message.

• script_err script_plugin_call_language(script_plugin_state st, char* fn)

Calls a function which has been de�ned natively in the environment namespace of the
plugin's virtual machine. When calling a function from this language's copy of vir-
tual environment, either in C through script_call or from code from other plugins
(which would also route through script_call), LibScript will use this function to
try to run it. If the function was not de�ned in the plugin, the SCRIPT_ERRFNUNDEF
value must be returned. Otherwise, it should be executed, with input parameters ob-
tained through script_get_* and return values sent with script_put_*, and values
SCRIPT_OK or SCRIPT_ERRLANGRUN should be returned as appropriate.

102 APPENDIX A. THE LIBSCRIPT API

• void script_plugin_done_language(script_plugin_state st)

Responsible for terminating an environment.

