
Taxonomy of
Package Management in
Programming Languages

and Operating Systems

Hisham Muhammad
Kong Inc. / htop / LuaRocks / GoboLinux

Lucas Correia Villa Real
IBM Research / GoboLinux

Michael Homer
Victoria University of Wellington / GoboLinux

Introduction:
a real-world example

To do frontend web development on a Mac, you may need to

install client-side JavaScript components

Introduction:
a real-world example

To do frontend web development on a Mac, you may need to

install client-side JavaScript components using Bower

Introduction:
a real-world example

To do frontend web development on a Mac, you may need to

install client-side JavaScript components using Bower
install Bower using npm

Introduction:
a real-world example

To do frontend web development on a Mac, you may need to

install client-side JavaScript components using Bower
install Bower using npm

install npm using Homebrew

Introduction:
a real-world example

To do frontend web development on a Mac, you may need to

install client-side JavaScript components using Bower
install Bower using npm

install npm using Homebrew
install Homebrew using… curl?

Introduction:
the mess we're in

The ecosystem is not getting any simpler
"Why don't we all just use RPM/APT/etc.?"

Introduction:
the mess we're in

The ecosystem is not getting any simpler
"Why don't we all just use RPM/APT/etc.?"

"Why don't we all just use C/Rust/Python/Haskell/etc.?"

Introduction:
the mess we're in

The ecosystem is not getting any simpler
"Why don't we all just use RPM/APT/etc.?"

"Why don't we all just use C/Rust/Python/Haskell/etc.?"

"Package management is a(n un)solved problem"

Introduction:
the mess we're in

The ecosystem is not getting any simpler
"Why don't we all just use RPM/APT/etc.?"

"Why don't we all just use C/Rust/Python/Haskell/etc.?"

"Package management is a(n un)solved problem"
"Programming languages are a(n un)solved problem"

Introduction:
the mess we're in

The ecosystem is not getting any simpler
"Why don't we all just use RPM/APT/etc.?"

"Why don't we all just use C/Rust/Python/Haskell/etc.?"

"Package management is a(n un)solved problem"
"Programming languages are a(n un)solved problem"

We accept the multitude of languages,
why not the multitude of package managers?

Introduction: multitude of languages,
multitude of managers
1.Different languages for different purposes

Different paradigms, different trade-offs

2.We know that there is room for DSLs and general-purpose langs

3.We know how to set boundaries and make languages interact

Introduction: multitude of languages,
multitude of managers
1.Different languages for different purposes

Different paradigms, different trade-offs

2.We know that there is room for DSLs and general-purpose langs

3.We know how to set boundaries and make languages interact
Not so much for package managers!

Introduction: multitude of languages,
multitude of managers
1.Different languages for different purposes

Different paradigms, different trade-offs

2.We know that there is room for DSLs and general-purpose langs

3.We know how to set boundaries and make languages interact
Not so much for package managers!

Let's look at package managers
the same way we look at languages

Understanding
package management

1. Language-specific vs.
Language-agnostic
package managers

Types of languages:
domain-specific and general-purpose PLs

domain-specific

seen as "smaller"

defined by inclusion
of features for the domain

general area ("systems")

seen as "complete"

defined by the
generality of its features

Types of package managers:
domain-specific and general-purpose PMs

"language-specific"

language ecosystem

defined by inclusion
of features for the domain

"language-agnostic"

often deal with whole OS

defined by the
generality of its features

Types of package managers:
examples

language-specific

pip (Python)

RubyGems (Ruby)

npm (JavaScript)

Cabal (Haskell)

Cargo (Rust)

LuaRocks (Lua)

language-agnostic

RPM (RedHat/Fedora/etc.)

dpkg/apt (Debian/Ubuntu/etc.)

Pacman (Arch Linux)

Homebrew (macOS)

Nix (NixOS)

GoboLinux

Why have language-specific PMs at all?

scalability
Debian: 59,000+

Java (Maven Central): 290,000+

Ruby packages in Debian: 1,196
Ruby packages in RubyGems: 150,000+

Why have language-specific PMs at all?

portability
packaging language extensions using OS managers

leads to an n-by-m explosion

Windows and Mac have no native package manager

2. Paradigms of package
management:
Filesystem-oriented vs.
Database-oriented

Paradigms of programming languages:
a didactic tool

It's a typical didactic device to organize PLs by "paradigms":

Imperative, functional, etc.
Procedural, object-oriented, etc.

They illustrate design choices ("how to represent computation")

and design choices bring design trade-offs

Paradigms of package managers:
a central design choice

"How to map files into packages"

Using the file hierarchy itself: filesystem-oriented

Externally to the files managed: database-oriented

Paradigms of package management:
examples

filesystem-oriented

Homebrew (macOS)

npm (JavaScript)

Nix (NixOS)

Cargo (Rust)

GoboLinux

LuaRocks 1.x

database-oriented

RPM (RedHat/Fedora/etc.)

pip (Python)

dpkg/apt (Debian/Ubuntu/etc.)

Cabal (Haskell)

Pacman (Arch Linux)

LuaRocks 2.x+

Paradigms of package management:
trade-offs compared

filesystem-oriented

define the structure:
designed to avoid clashes,

keep mapping in sync is trivial

applications need to use the
filesystem structure defined:

runtime lookup may be complex

more often language-specific

database-oriented

adapt to pre-existing structure:
needs to forbid clashes,

fragile if goes out of sync

applications can be
unaware of manager:

runtime lookup can be trivial

most distro managers

3. Integration between languages vs.
Integration between package
managers

Dynamic (at runtime):

calling conventions, LuaJIT FFI, Python cffi...

Static (at compile time):

linking formats, Lua C/API <lua.h>, PyObject API <Python.h>...

Integration between languages:
dynamic and static integrations

none?

Integration between package managers:
dynamic and static integrations

Dynamic (at runtime):

what happens if you install a package that uses a runtime FFI
and the C library is not installed?

Static (at compile time):

what happens if you install a bindings package and the
headers of the library you're binding to are not installed?

Integration between package managers
dynamic and static integrations

Experiences with
package management

GoboLinux:
fs-oriented OS package management

Linux distribution project started in 2003

Each package installed under a separate prefix:
/Programs/GCC/6.2.0/bin/gcc
/Programs/Glibc/2.24/lib/libc.so.6

A tree of symlinks provides compatibility and runtime resolution

Running on this computer!

Informed the design of Homebrew ("the GoboLinux way")

LuaRocks:
a language-specific package manager
Package manager for the Lua programming language (2007-current)

LuaRocks 1.x: filesystem-oriented design
informed by GoboLinux design: multiple versions, no file conflicts!
required runtime cooperation: custom package loader for require()

LuaRocks 2.x+: database-oriented design
lots of code to deal with file conflicts
no runtime cooperation required: works with Lua out-of-the-box!
maintained optional custom package loader (does way more work)

LuaRocks: minimal PL-to-OS management awareness

external_dependencies = { MYSQL = { header = "mysql.h" }

can be used for both FFI and C-API dependencies
to gracefully fail ahead-of-time — doesn't actually install

GoboLinux Aliens: OS-to-PL management awareness

GoboLinux packages can depend on PL packages, uses PL managers:
Cabal:mtl
CPAN:XML::Parser 0.4.1

LuaRocks and GoboLinux Aliens:
bridging OS and PL package managers

Conclusion: multitude of languages,
multitude of managers
1.Different package managers for different purposes

Different paradigms, different trade-offs

2.There is room for PL-specific and OS-wide PMs

3.We need to set boundaries and make package managers interact

Conclusion: multitude of languages,
multitude of managers
1.Different package managers for different purposes

Different paradigms, different trade-offs

2.There is room for PL-specific and OS-wide PMs

3.We need to set boundaries and make package managers interact
Time for a package manager protocol?

Conclusion: multitude of languages,
multitude of managers
1.Different package managers for different purposes

Different paradigms, different trade-offs

2.There is room for PL-specific and OS-wide PMs

3.We need to set boundaries and make package managers interact
Time for a package manager protocol?

Let's look at package managers
the same way we look at languages

