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Introduction:
a real-world example

To do frontend web development on a Mac, you may need to

install client-side JavaScript components using Bower
install Bower using npm

install npm using Homebrew 
install Homebrew using… curl?
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the mess we're in

The ecosystem is not getting any simpler
"Why don't we all just use RPM/APT/etc.?"

"Why don't we all just use C/Rust/Python/Haskell/etc.?"

"Package management is a(n un)solved problem"
"Programming languages are a(n un)solved problem"

We accept the multitude of languages,
why not the multitude of package managers?
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Let's look at package managers 
the same way we look at languages



Understanding
package management



1. Language-specific vs.
Language-agnostic
package managers



Types of languages:
domain-specific and general-purpose PLs

domain-specific

seen as "smaller"

defined by inclusion
of features for the domain

general area ("systems")

seen as "complete"

defined by the
generality of its features



Types of package managers:
domain-specific and general-purpose PMs

"language-specific"

language ecosystem

defined by inclusion
of features for the domain

"language-agnostic"

often deal with whole OS

defined by the
generality of its features



Types of package managers:
examples

language-specific

pip (Python)

RubyGems (Ruby)

npm (JavaScript)

Cabal (Haskell)

Cargo (Rust)

LuaRocks (Lua)

language-agnostic

RPM (RedHat/Fedora/etc.)

dpkg/apt (Debian/Ubuntu/etc.)

Pacman (Arch Linux)

Homebrew (macOS)

Nix (NixOS)

GoboLinux



Why have language-specific PMs at all?

scalability
Debian: 59,000+

Java (Maven Central): 290,000+

Ruby packages in Debian: 1,196
Ruby packages in RubyGems: 150,000+



Why have language-specific PMs at all?

portability
packaging language extensions using OS managers

leads to an n-by-m explosion

Windows and Mac have no native package manager



2. Paradigms of package  
management:
Filesystem-oriented vs. 
Database-oriented



Paradigms of programming languages:
a didactic tool

It's a typical didactic device to organize PLs by "paradigms":

Imperative, functional, etc.
Procedural, object-oriented, etc. 

They illustrate design choices ("how to represent computation")

and design choices bring design trade-offs



Paradigms of package managers:
a central design choice

"How to map files into packages"

Using the file hierarchy itself: filesystem-oriented

Externally to the files managed: database-oriented



Paradigms of package management:
examples

filesystem-oriented

Homebrew (macOS)

npm (JavaScript)

Nix (NixOS)

Cargo (Rust)

GoboLinux

LuaRocks 1.x

database-oriented

RPM (RedHat/Fedora/etc.)

pip (Python)

dpkg/apt (Debian/Ubuntu/etc.)

Cabal (Haskell)

Pacman (Arch Linux)

LuaRocks 2.x+



Paradigms of package management:
trade-offs compared

filesystem-oriented

define the structure:
designed to avoid clashes,

keep mapping in sync is trivial

applications need to use the 
filesystem structure defined:

runtime lookup may be complex

more often language-specific

database-oriented

adapt to pre-existing structure:
needs to forbid clashes,

fragile if goes out of sync

applications can be
unaware of manager:

runtime lookup can be trivial

most distro managers





3. Integration between languages vs.
Integration between package 
managers



Dynamic (at runtime):

calling conventions, LuaJIT FFI, Python cffi...

Static (at compile time):

linking formats, Lua C/API <lua.h>, PyObject API <Python.h>...

Integration between languages:
dynamic and static integrations



none?

Integration between package managers:
dynamic and static integrations



Dynamic (at runtime):

what happens if you install a package that uses a runtime FFI
and the C library is not installed?

Static (at compile time):

what happens if you install a bindings package and the
headers of the library you're binding to are not installed?

Integration between package managers
dynamic and static integrations



Experiences with
package management



GoboLinux:
fs-oriented OS package management

Linux distribution project started in 2003

Each package installed under a separate prefix:
/Programs/GCC/6.2.0/bin/gcc
/Programs/Glibc/2.24/lib/libc.so.6

A tree of symlinks provides compatibility and runtime resolution

Running on this computer!

Informed the design of Homebrew ("the GoboLinux way")



LuaRocks:
a language-specific package manager
Package manager for the Lua programming language (2007-current)

LuaRocks 1.x: filesystem-oriented design
informed by GoboLinux design: multiple versions, no file conflicts!
required runtime cooperation: custom package loader for require()

LuaRocks 2.x+: database-oriented design
lots of code to deal with file conflicts
no runtime cooperation required: works with Lua out-of-the-box!
maintained optional custom package loader (does way more work)



LuaRocks: minimal PL-to-OS management awareness

external_dependencies = { MYSQL = { header = "mysql.h" }

can be used for both FFI and C-API dependencies
to gracefully fail ahead-of-time — doesn't actually install

GoboLinux Aliens: OS-to-PL management awareness

GoboLinux packages can depend on PL packages, uses PL managers:
Cabal:mtl
CPAN:XML::Parser 0.4.1

LuaRocks and GoboLinux Aliens:
bridging OS and PL package managers
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