
PUC-Rio

Departamento de Informática

PhD Thesis

Data�ow Semantics for End-User

Programmable Applications

Author:

Hisham Hashem Muhammad

Advisor:

Roberto Ierusalimschy

January 19th, 2016

This page intentionally contains only this sentence.

To my mother and father,
who never used computers.

Acknowledgements

I would like to thank my advisor, Roberto Ierusalimschy, for his patience as I
searched for my research topic, for his trust in my work, and for the revision of
the text. Working with Roberto gave me the assurance that my work was held to
high standards at all moments.

I thank the members of the Examination Committee, professors Renato Cerqueira,
Raquel Prates, Hermann Haeusler and Simone Barbosa for their review and for their
encouraging comments. I also thank Simone for giving me early pointers that ended
up in�uencing greatly the resulting work.

I am thankful to all my friends at LabLua, who made this lab a second (or
perhaps �rst) home for me during these �ve years. Especially, I would like to thank
Ana Lúcia, for running the lab, being a delight to work with throughout our projects,
but most of all for the support and advice in many crucial moments. Thank you for
not letting me give up on my vision.

I thank the friends I made in Rio (some of whom aren't here anymore), who
made these years here so much better, and to the ones from the South (some of
whom aren't there anymore), who always made me feel like the years hadn't passed
whenever I went to visit. The bonds we make along the way are the most precious
thing in life, and I am fortunate to have made strong ones that the distance did not
and will not break, no matter where life takes us.

Finally, my deepest gratitude goes to my family, who always cheered me on from
the distance and who are always there for me, and in particular to my lovely girlfriend
Patrícia, for her support, encouragement, and for keeping me moving forward. Your
tenacity is inspiring; you are an example I try to follow.

This work was partly supported by CNPq and PUC-Rio, and for that I am
grateful.

4

Abstract

Many applications are made programmable for advanced end-users by adding facili-
ties such as scripting and macros. Other applications take a programming language
to the center stage of its UI. That is the case, for example, of the spreadsheet formula
language. While scripting has bene�ted from the advances of programming language
research, producing mature and reusable languages, the state of UI-level languages
lags behind. We claim that a better understanding of such languages is necessary.
In this work, we model the semantics of existing end-user programming languages in
three di�erent domains: multimedia, spreadsheets and engineering. Our focus is on
data�ow languages, a representative paradigm for end-user programmable applica-
tions. Based on this analysis, we aim to provide a better understanding of data�ow
semantics as used in the context of end-user programming and propose guidelines
for the design of UI-level languages for end-user programmable applications.

5

Resumo

Muitas aplicações são tornadas programáveis para usuários �nais avançados adicio-
nando recursos como scripting e macros. Outras aplicações dão a uma linguagem
de programação um papel central na sua interface com o usuário. Esse é o caso,
por exemplo, da linguagem de fórmulas de planilhas de cálculo. Enquanto a área de
scripting se bene�ciou dos avanços das pesquisas em linguagens de programação, pro-
duzindo linguagens maduras e reusáveis, o estado das linguagens em nível de inter-
face não teve o mesmo grau de desenvolvimento. Argumentamos que um melhor en-
tendimento desta classe de linguagens se faz necessário. Neste trabalho, modelamos
semânticas de linguagens de usuário �nal existentes, em três diferentes domínios:
multimídia, planilhas e engenharia. Nosso foco é em linguagens de data�ow, um
paradigma representativo em aplicações programáveis por usuários �nais. Com
base nessa análise, temos como objetivo prover um melhor entendimento do de-
sign de linguagens de data�ow no contexto de programação de usuários �nais e
propor linhas-guia para o projeto de linguagens de nível de interface baseadas neste
paradigma para aplicações programáveis.

6

Contents

1 Introduction 12

1.1 Motivation . 12
1.2 Problem statement . 13

2 Background 15

2.1 End-user programming . 15
2.1.1 Roles of programming in end-user applications 15
2.1.2 The three-layer architecture in end-user programmable appli-

cations . 16
2.1.3 Scripting languages . 17

2.2 Data�ow programming . 18
2.2.1 A brief history of data�ow . 19
2.2.2 Static and dynamic data�ow models 19
2.2.3 Data-driven and demand-driven data�ow 20
2.2.4 Uni and bi-directional �ow . 21

3 Design alternatives for data�ow UI-level languages 22

3.1 Hils's classi�cation of design alternatives 22
3.2 An extension to Hils's classi�cation 24

3.2.1 Data�ow model . 24
3.2.2 N-to-1 inputs . 25
3.2.3 Time and rate-based evaluation 26
3.2.4 Separate programming and use views 27
3.2.5 Indirect connections . 27
3.2.6 Textual sub-language . 28

3.3 Non-data�ow UI-level languages . 28
3.4 Case studies . 29
3.5 Discussion: On the use of de�nitional interpreters 30

4 Case study: Pure Data 31

4.1 Overview of the language . 31
4.1.1 Nodes and values . 31
4.1.2 Graph evaluation . 33
4.1.3 Messages and the textual sub-language 33
4.1.4 Node triggering . 34

4.2 An interpreter modeling the semantics of Pure Data 35
4.2.1 Representation of programs 35

7

CONTENTS 8

4.2.2 Representation of states . 37
4.2.3 Execution . 37

4.2.3.1 Main loop . 38
4.2.3.2 Event processing . 39
4.2.3.3 Audio processing . 42
4.2.3.4 Initial state . 43

4.2.4 Operations . 44
4.2.4.1 Atom boxes . 45
4.2.4.2 An object with side-e�ects: print 45
4.2.4.3 An object with hot and cold inlets: + 45
4.2.4.4 Objects producing timed events: delay and metro . 46
4.2.4.5 Message handlers for audio objects: osc~ and line~ 47
4.2.4.6 Cold inlets . 47
4.2.4.7 Data objects: float and list 47
4.2.4.8 Audio handling operations: osc~, line~ and *~ . . . 48

4.2.5 Demonstration . 49
4.3 Discussion: Syntax and semantics in visual languages 50

5 Case study: spreadsheets 52

5.1 The formula language . 53
5.1.1 Syntax . 54
5.1.2 Values and types . 55

5.2 Evaluation model . 56
5.2.1 Array formulas . 57

5.3 An interpreter modeling spreadsheet semantics 59
5.3.1 Representation of programs 60
5.3.2 Representation of states . 61
5.3.3 Execution . 62

5.3.3.1 Main loop . 62
5.3.3.2 Resolving addresses 64

5.3.4 Calculating cell values . 65
5.3.4.1 Regular cell evaluation 67
5.3.4.2 Cell evaluation for array formulas 68

5.3.5 Operations . 70
5.3.5.1 Literals, references and ranges 70
5.3.5.2 IF, AND, and OR . 71
5.3.5.3 SUM . 72
5.3.5.4 INDIRECT . 73
5.3.5.5 String operations . 73
5.3.5.6 Mathematical operations and equality 74
5.3.5.7 Type conversions . 76

5.3.6 Demonstration . 77
5.4 Discussion: Language speci�cation and compatibility issues 77

CONTENTS 9

6 Case study: LabVIEW 79

6.1 Overview of the language . 79
6.1.1 Execution modes . 80
6.1.2 Data types and wires . 81
6.1.3 Looping and cycles . 82
6.1.4 Timing . 83
6.1.5 Tunnels . 83
6.1.6 Other control structures . 84

6.2 An interpreter modeling the semantics of LabVIEW 85
6.2.1 Representation of programs 86
6.2.2 Representation of state . 89
6.2.3 Execution . 91

6.2.3.1 Main loop . 91
6.2.3.2 Initial state . 92
6.2.3.3 Event processing . 93
6.2.3.4 Firing data to objects 95

6.2.4 Nodes and structures . 97
6.2.4.1 Constant nodes . 97
6.2.4.2 Feedback nodes . 97
6.2.4.3 Function nodes . 98
6.2.4.4 Control structures 98

6.2.5 Operations . 103
6.2.5.1 Numeric and relational operators 104
6.2.5.2 Array functions . 105
6.2.5.3 Random Number . 107
6.2.5.4 Wait Until Next Ms 107

6.2.6 Demonstration . 108
6.3 Discussion: Is LabVIEW end-user programming? 108

6.3.1 LabVIEW and Pure Data compared 109

7 Some other languages 111

7.1 Reaktor . 111
7.2 VEE . 113
7.3 Blender . 114
7.4 Discussion: Data�ow end-user programming, then and now 116

8 Design alternatives critiqued 117

8.1 Graph evaluation . 117
8.1.1 Static and dynamic data�ow models 119
8.1.2 Data-driven and demand-driven data�ow 119
8.1.3 Uni and bi-directional data�ow 120
8.1.4 N-to-1 inputs . 120
8.1.5 Timing considerations . 121
8.1.6 Indirect and dynamic connections 122

8.2 Language features . 122
8.2.1 Selector/distributor . 123
8.2.2 Iteration . 123

CONTENTS 10

8.2.3 Sequence construct . 124
8.2.4 Subprogram abstractions . 124
8.2.5 Higher-order functions . 127

8.3 Type checking . 127
8.4 Other aspects . 128

8.4.1 Liveness, representation and modes 128
8.4.2 Textual sub-language and scripting 129

8.5 Discussion: An architectural pattern for end-user programmable ap-
plications . 130

9 Conclusion 132

A Demonstration of the interpreter modeling Pure Data 143

B Demonstration of the spreadsheet interpreter 147

B.1 Formatting . 148
B.2 A test driver . 148
B.3 The example spreadsheet . 149

C Demonstration of the interpreter modeling LabVIEW 151

C.1 Program construction . 152
C.2 Demonstration of the VI . 153

�Every generation has to �ght the same battles,
for there is no �nal victory
and there is no �nal defeat.�
Tony Benn (1925 � 2014)

Chapter 1

Introduction

1.1 Motivation

End-user programming is a term that refers to programming activities performed
by end-users, who are not specialists in professional software development but are
specialists in other domains, in the context of software developed for their domain
of interest [BS14]. Early focus of end-user programming was in scripting [Ous98]:
embedding a programming language into an application so that users can write pro-
grams that drive the application, or at least parts of it. Some examples are Visual
Basic for Applications in the Microsoft O�ce productivity suite and AutoLISP in
AutoCAD. However, most end-user programming happens using languages not re-
garded by their users as programming languages proper, such as spreadsheets and
graphical node editors [MSH92]. For this reason, the latter term �end-user develop-
ment� took over, which avoids having to answer the question of what is and what
isn't programming.

Still, those languages are indeed domain-speci�c languages (DSLs), even if they
often have restricted expressivity and if their syntaxes (often a mix of textual ele-
ments and graphics) do not make it clear that they are programming languages. In
particular, there are applications where the language becomes indistinguishable from
the user interface (UI), and using the software means using the language. Examples
of scenarios where this happens are spreadsheets such as Excel [Nar93], where using
the spreadsheet means using the formula language, and the node graph environment
of Pure Data, a multimedia application developed primarily for music [P+15]. Here,
we will call these languages UI-level languages : programming languages that are
apparent to the user as the main UI of the application�not to be confused with
languages for constructing GUIs (Graphical User Interfaces).

There is, therefore, a spectrum of possibilities on how deeply to integrate pro-
grammability into end-user applications. It can range from being an optional feature
for advanced users, as it is often the case with scripting, to being at the core of the
application experience, as is the case with UI-level languages.

The programming language community has given much attention to the scripting
end of the spectrum of end-user programming. Scripting in applications has evolved
through three stages:

• The �rst stage was the use of so-called �little languages� of the 1970s and 1980s

12

CHAPTER 1. INTRODUCTION 13

[Ben86]�examples are small single-purpose languages such as eqn and pic in
Unix [DOK+87], and SCUMM for scripting adventure-style games 1;

• Then, powerful domain-speci�c languages emerged, such as GraForth, Word-
Basic in Microsoft Word and AutoLISP in AutoCAD�these languages often
adapted the design of existing general-purpose programming languages, pro-
ducing application-speci�c dialects;

• Finally, once scripting was identi�ed as a general style of programming [Ous98],
we saw the introduction of general-purpose scripting languages such as Tcl,
Python and Lua�these languages have embeddable implementations, allowing
them to be linked as libraries and reused in many applications. Some of these
languages became popular in particular domains in spite of not having been
speci�cally designed for those �elds: several graphics programs use Python as
a scripting language, and Lua is particularly successful in the game industry.

The UI end of the spectrum, however, lags behind. The state of end-user UI-level
languages now is similar to that of scripting languages in the 1980s: most applica-
tions develop their own custom �little languages� for end-user programming, tightly
coupled to their UIs. At best, ideas are reused from similar e�orts, as evidenced
by several visual programming languages inspired by Scratch (Stencyl, AppInven-
tor, Snap, Pocket Code), the various node/graph editors in multimedia applications
(Nuke, Max/MSP, Blender, Rhino 3D, Antimony, Unreal Engine), and the formula
languages for di�erent spreadsheets.

The semantics of these UI-level languages, in particular, are often ill-speci�ed.
This has wide-ranging consequences, a�ecting both users and developers. Users are
struck by subtle incompatibilities even when di�erent applications share the same
basic metaphors, as is the case of di�erent spreadsheet applications. Developers end
up �reinventing the wheel�, producing designs that are not informed by PL research,
often subject to pitfalls that could have been avoided had the language been designed
based on established grounds.

1.2 Problem statement

While nowadays scripting is integrated into applications by reusing proven embed-
dable languages which bene�t from the advances of programming language research,
end-user UI-level languages are still developed ad hoc, often by developers who are
specialists in the domain of the application (e.g. computer graphics, music, statis-
tics, �nance), but not in language design and implementation. This distinction
manifests itself in many ways, ranging from unclear semantics and little possibility
of knowledge reuse from the part of users, down to lack of application interoperabil-
ity and performance issues. Programming language research is brought to the fold

1Originally created by Lucas�lm Games as �Script Creation Utility for Maniac Mansion� to be
used in a single game; later used in dozens of games, licensed to several companies and even reim-
plemented as a free-software engine (http://www.scummvm.org). This illustrates the �accidental�
nature of scripting languages from that era.

http://www.scummvm.org

CHAPTER 1. INTRODUCTION 14

afterwards, when trying to �nd ways to integrate missing functionality or trying to
�x issues with the design or implementation [JBB03, FP15].

By focusing on the presentation and direct manipulation of data, many UI-
level languages adopt to some extent the data�ow paradigm [JHM04], as it seems
a natural �t for programmatic manipulation of data in user interfaces. Thus, the
problem domain we focus our attention on is that of data�ow UI-level languages, as
these are representative of a number of languages where end-user programmability
takes center stage [Hil92], and the problem we address in particular is that of ad hoc
semantics in data�ow programmable UIs.

We identify the need for UI-level data�ow languages to go through a similar
movement that occurred with scripting languages. Scripting languages evolved from
ad hoc languages into standard reusable languages that integrate properly: they can
be embedded in an application and can be extended with constructs for dealing with
the application's domain.

This research attempts to provide the �rst steps towards providing designers of
end-user programmable applications with a structured knowledge base for reasoning
about data�ow semantics for their UI-level languages. Our research question, there-
fore, can be framed as such: when designing a data�ow language for an end-user
programmable application, which design choices should be taken into consideration
with regard to its semantics and what are their e�ects?

We begin with a background review of the �elds of end-user programming and
data�ow languages in Chapter 2. Then, in Chapter 3 we sharpen our focus to de�ne
data�ow UI-level languages and present a list of design alternatives for the con-
struction of data�ow languages for end-user programming. With this design space
in mind, we analyze existing UI-level data�ow languages and produce semantics
for a number of them, understanding their features and shortcomings. These are
presented as case studies in Chapters 4, 5 and 6, as well as a review of additional lan-
guages in 7. Informed by the design of those existing application-speci�c languages,
we revisit in Chapter 8 our list of design alternatives, and present a discussion of
the impacts of various design choices. Finally, we conclude the work in Chapter 9,
in which we review our contributions.

Chapter 2

Background

2.1 End-user programming

End-user programming is a term that describes the involvement of users in the
addition of functionality to their applications via programming [BS14]. For this to
be possible, applications have to be designed with programmability in mind: they
should allow new functionality to be built based on the combination of existing ones,
and there has to be linguistic support in the application so that the user may express
this new functionality.

2.1.1 Roles of programming in end-user applications

Depending on the application's design, end-user programming may take a peripheral
or a central role in its use. We de�ne them as such:

• Programming is peripheral to an end-user application if users can make e�ec-
tive use of the application with variable degrees of complexity, producing from
simple to complex end-results (e.g. documents, queries, etc.), without ever
resorting explicitly to the programming capabilities of the application.

• Programming is central to an end-user application if users must interact ex-
plicitly with the programming capabilities of the application in order to make
any non-trivial use of it, even when producing simple end-results. In other
words, using the application is using the application's programming language.

Examples of peripheral support for end-user programming are macro recorders and
embedded scripting languages. Macro recording allows the user to automate se-
quences of steps, but o�ers little in the way of abstraction. Embedded scripting
languages o�er a programmable view to the application, by extending the applica-
tion with the full power of what is usually a Turing-complete programming language.
Still, we categorize these features as peripheral to the user of the application, because
most users can produce content in the application while ignoring its programmable
aspects.

The LibreO�ce Writer word processor and the Gimp image editor are exam-
ples of scriptable applications, where programming takes a peripheral role. A user

15

CHAPTER 2. BACKGROUND 16

End user formulas macro recorder node editor Unix shell level editor

Domain dev macros textual macros scripting shell script game scripting

Core app spreadsheet word processor 3D app C utilities video game

Figure 2.1: Nardi's three types of programmers and three-layer architectures in
end-user programmable systems

can produce a text document with a very complex layout in LibreO�ce Writer or
an intricate multi-layered drawing in Gimp without ever touching their scripting
abilities. A Gimp user may bene�t implicitly from the scripting abilities of the
application by using bundled �lters and e�ects available in the application toolset
that are implemented as scripts, but from the user's perspective these tools could
just as well be built into the application's core. One could conceive an application
where all tools are implemented as scripts; still, if the user could use these tools as
black boxes without ever touching the programming language, this means the role of
programming is not central from an end-user perspective. For this reason, we state
that the interaction with the programming facilities needs to be explicit in order to
characterize the activity as end-user programming.

A prominent example of an application where end-user programming takes a
central role is the spreadsheet. A spreadsheet is an application with an unusually
open-ended design, in which users can create new solutions for their domains, ex-
pressed as calculations in a formula language. Programming is central in the sense
that the programmable aspect of the application, the formula language, is unavoid-
able for any use beyond the trivial case of entering constants into cells: using the
formula language is equivalent to using the spreadsheet.

2.1.2 The three-layer architecture in end-user programmable
applications

When programming support is added in a peripheral role to an application, it is
usually to provide advanced �exibility beyond what the base feature set of the
application o�ers: composition of features to automate work�ows, iteration to avoid
repetitive tasks, interaction with the operating system. Visual Basic for Applications
(VBA), embedded in Microsoft O�ce programs, is an example of this.

This kind of addition also makes sense in applications where this base feature set
is provided as a programming language in a central role. This means an application
may feature programming in both central and peripheral roles. Modern spread-
sheets such as Excel are an example of this. For advanced uses, spreadsheets also
o�er scripting support: �macros�, in spreadsheet parlance, are extension functions
implemented as scripts (in Excel, these scripts are implemented in VBA). These
extended functions can then be used in the formula language.

A three-layer general architecture like this, with an end-user language on top,
a scripting language in the middle, and the core implementation of the application
at the bottom, is a common pattern we identify in several successful examples of
applications where end-user programming is the central form of interaction.

In �A Small Matter of Programming� [Nar93], Bonnie Nardi reports on studies

CHAPTER 2. BACKGROUND 17

that identi�ed three types of people who are engaged in programming at di�erent
levels: the end-user, who may be a sophisticated user in their own domain but who
does not particularly care about programming and just wants to use the computer
as a tool to solve problems from their domain; the domain developer (called a �lo-
cal developer� in [NM91], �translator� in [Mac90], �tinkerer� in [MCLM90]), who
started as an end-user but acquired an appreciation towards programming and is
therefore more predisposed to dive into the possibilities o�ered by a programmable
system; and �nally, the software development professional, who had formal training
in programming. Figure 2.1 maps these kinds of users to examples of three-language
architectures used by end-user-programmable applications.

The existence of di�erent roles among a community of users continues to be ob-
served [DJS11], and the alignment between these three di�erent user pro�les and
three architectural layers does not seem to be coincidental. We believe that this
three-tier architecture is necessary in end-user programmable applications that fea-
ture programmability as a central feature in their design. The main user-facing
language should be closer to the domain abstractions than a full-�edged general-
purpose scripting language: while a language like Python is appropriate for script-
ing a 3D editor like Blender, a Python command line would never be appropriate as
the editor's primary interface. The scripting language exists, thus, as a feature that
provides support for when the user's goals outgrow the possibilities of the UI-level
language.

2.1.3 Scripting languages

Scripting languages complement UI-level languages in end-user programmable appli-
cations. They allow advanced users (or even programming professionals) to provide
extensions to the UI-level language when needed. Common examples of such exten-
sions are adding custom functions to a spreadsheet's formula language, or designing
richer game interactions than those available out-of-the-box in a game level editor.

This is, in a sense, an alternative look at the role of scripting. Ever since Ouster-
hout's seminal paper [Ous98], scripting languages are primarily regarded in relation
to the core applications that sit below them: they are regarded as higher-level al-
ternatives to system programming languages, and as �glue� languages that connect
lower-level components. Here, we focus on higher-level programmability of applica-
tions. In this context, scripting exists to serve the needs of the end-user language
that sits above it, providing unconstrained, Turing-complete extensibility to a UI-
level language that remains focused on domain-speci�c elements. For example, while
a scripting language for a 3D editor may deal in terms of typical programmer con-
structs such as records, lists and associative arrays, its end-user UI-level language
should deal in terms of domain constructs such as 3D objects, textures and lighting
sources.

The evolution of scripting languages points in the direction we indicate here.
When we look at the development history of successful scripting languages such as
Python and Lua, we see that these languages started out with clear goals of being
easy to program, but over the years their development focus tends to favor adding
constructs for advanced programmers. Lua grew from having a single numeric type

CHAPTER 2. BACKGROUND 18

to having distinct �oating-point and integer numbers with bitwise operators, and
gained advanced features such as coroutines and lexically-scoped closures. Python
gradually shifted its focus away from adding libraries with ready-made components
and into improving core language constructs. In contrast, end-user programmable
applications like LabVIEW and Max/MSP advertise the number of new library
functions added on each new release.

This marks a culture shift in scripting languages. The forerunner of modern
scripting languages, Tcl, was seen as inseparable from its UI library to the point that
the language was often mistakenly called �Tcl/Tk�. Nowadays, the Python commu-
nity favors adding libraries through the PIP package manager rather than merging
them into the core language1. We see similar trends in all scripting languages, with
their �edgling package managers: Perl and CPAN, Ruby and RubyGems, JavaScript
and npm, Lua and LuaRocks.

Scripting languages today are seen less as a deliberately simpli�ed tool for �non-
programmers� and more as as a class of languages focused on rapid development,
sharing some features such as dynamic type systems, automatic memory manage-
ment and dynamic code loading. As these languages evolve and these features
prove useful for programming in general, they are gaining ground in many �elds
beyond those originally identi�ed with �scripting�. Still, scripting�in the sense of
embedding the power of a full programming language to provide advanced control
of applications�remains an essential aspect of end-user programming.

2.2 Data�ow programming

�Data�ow� is an umbrella term that refers to computation evaluation dictated by
the �ow of data, the relationship between inputs and outputs in the program, rather
than explicit programmer-dictated �ow of control. The term �data�ow language�
has been used to refer to various families of languages over time. We review some
of these languages here to get an outlook of what we mean by the term.

Data�ow programs correspond to directed graphs, where nodes represent oper-
ations on data, and arcs represent connections through which data tokens can be
sent from node to node. Operations have inputs (incoming edges receiving data) and
outputs (outgoing edges sending data). An operation executes when all its inputs
receive data tokens. The operation computes its function, and then ��res� the re-
sult through one or more outputs, making data available to other nodes. The order
of evaluation, thus, depends exclusively on the �ow of data, hence the name. In
contrast, control-�ow2 oriented languages are those that feature explicit sequencing
constructs written by the programmer: all imperative languages fall in this group.
In a pure data�ow language, evaluation order is implicit and arbitrary, and there
is full referential transparency [Den85]. Purely functional languages certainly �t

1Python developer Kenneth Reitz quipped that the �standard library is where modules go
to die�, as standardizing libraries tends to slow down their evolution for the sake of backward
compatibility [Phi13].

2We use �data�ow� spelled without a hyphen as this is an established term in the literature
to refer to a particular class of languages; �control-�ow�, on ther other hand, is hyphenated as it
refers merely to the notion of a �ow of control.

CHAPTER 2. BACKGROUND 19

this description. What came to be known as the data�ow paradigm, however, is a
particular style of representing these data relationships, in particular the focus on
the �ow of data, and how to represent it in the face of iteration or recursion. In
any case, just like not all functional languages are pure, neither are all data�ow
languages.

2.2.1 A brief history of data�ow

Early history of data�ow languages is closely tied to that of data�ow computers. In
the 1970s, data�ow hardware architectures, with large number of processing elements
interconnected to form data�ow graphs, were considered as an alternative to the
von Neumann model [WP94]. Given that the data�ow model would be inherently
parallel in its design, it was hoped that this would overcome the di�culties of writing
concurrent software and the CPU-memory bottleneck in Von Neumann machines.
Programming data�ow computers required new languages, as it was particularly
hard to map traditional imperative languages to these architectures e�ciently.

The motivations of the many data�ow languages created over the years, both
textual and graphical, varied widely. In 1973, Kosinski presented DFL [Kos73],
a graphical language for operating systems programming, and he motivated the
data�ow approach by requirements of paralellism and modularity. Lucid [AW77]
is an early example of a textual data�ow language, with a stated goal of making
a language amenable to proof reasoning that remained friendly to imperative pro-
grammers. Their approach was to make a functional-style language that included
iteration constructs. Programs are written in single-assignment style; in iterations,
variable updates are written as next var = exp , where occurrences of variable var
in expression exp represent its value in in the previous iteration.

Since the 1990s, the focus of data�ow languages moved away from performance
and paralellism and into software engineering territory, with a particular growth
in the �eld of data�ow visual programming languages [JHM04], of which the most
prominent example in the industry is LabVIEW [Nat01], a commercial application
for industrial automation �rst released in 1986 and marketed to this day, where the
graphical language is tightly integrated with the development and execution envi-
ronment. More recently, research on data�ow shifted its focus once again towards
parallelism [LCM+08, GS11, GKM+11, BJ13].

2.2.2 Static and dynamic data�ow models

It is often desirable for data�ow programming models to allow the representation of
iteration, in which a subgraph executes multiple times. If we consider that the only
rule for �ring a node is that its all inputs have data ready for consumption, it is
conceivable that the early part of a new iteration could begin executing before the
previous iteration has �nished to run, in a pipeline style of execution. Further, if the
iterations of a loop have no data dependencies between them, it should be possible
to run all iterations of a loop in parallel. These possibilities, however, complicate
both the processing and memory models.

A simple restriction that causes a major simpli�cation to the data�ow model

CHAPTER 2. BACKGROUND 20

is to add another rule for �ring nodes: a node is �red only if all its input ports
have data tokens ready for consumption and if its output ports have no data tokens
pending for consumption by further nodes. This model is called the static data�ow
model. In the static data�ow model, memory management is simple, as each arc
in the graph represents one storage unit for a data token [Den85]. Synchronous
languages such as Lustre [HCRP91] and Lucid [AW77] implement static data�ow
models.

For exploiting the full possibilities of data�ow parallelism, dynamic models were
devised. In common, they all lift the restriction that the output ports need to be
empty for a node to execute. A straightforward interpretation of this model is that
arcs now represents bu�ers with multiple data tokens between nodes. Management
of memory and processing units becomes more complicated, as it becomes necessary
to tag tokens with bookkeping data, for managing concurrent �ows of di�erent
iterations. Tagged-token models support parallel loops by associating to each input
value a tag, indicating which iteration that value is a part of. A node f with input
ports p1, p2...pn will feature n queues q1, q2...qn, containing tagged values of the form
(v, i), indicating a value v for iteration i. The graph will �re f(v1, v2...vn) only when
it is able to extract from the queues a complete set of tokens {(vx, i) ∈ qx|1 ≤ x ≤ n}
with the same tag i.

There is a number of architectural challenges for implementing dynamic data�ow
models e�ciently: several models were proposed, and this continues to be an area
of active research [KSP15]. The choice of data�ow execution model is not only an
implementation issue. For one, it a�ects language design, as typical tagged-token
models use explicit looping constructs, which mark points where loop iteration tags
in tokens should be incremented or reset [Den85].

2.2.3 Data-driven and demand-driven data�ow

Another major design decision when choosing a data�ow model is whether to use
data-driven or demand-driven evaluation. These modes of evaluation correspond
to what in programming languages is conventionally called, respectively, eager (or
strict) and lazy evaluation.

Data-driven evaluation maps to eager evaluation: the availability of input data
triggers the evaluation of nodes that are connected to them, producing data for
nodes connected further ahead in the graph.

Demand-driven evaluation maps to lazy evaluation: the request of an output
causes a node connected to it to be triggered. If that node's input ports have data,
the node will execute, producing the output. If inputs are not available, the nodes
to which these inputs are connected are then triggered, cascading the triggering
backwards until inputs are available. Once inputs are available, nodes are evaluated
and their result values propagate forward via their output ports. This way, only the
parts of the graph which produce output data execute.

These terms come from the �eld of computer architecture, when data�ow ma-
chines were proposed as alternatives to the von Neumann model. In [TBH82], Tre-
leaven classi�ed architectures as �data-driven� or �demand-driven�, but also called
data-driven architectures �data-�ow computers� and demand-driven architectures

CHAPTER 2. BACKGROUND 21

�reduction computers�. Nowadays, both models are considered styles of data�ow
[Hil91, AS94].

2.2.4 Uni and bi-directional �ow

A �eld that is closely related to data�ow languages is that of constraint-based sys-
tems, but as we will see, these concepts are not equivalent and it is important to
establish the distinction here. Constraints allow the speci�cation of relationships be-
tween values�for example, one may specify the equation 9*C = 5*(F - 32) about
variables C and F representing a temperature in Celsius and Fahrenheit, and if either
C or F is updated to a new value, the other one is recomputed so that the equation of
the constraint continues to hold. Constraint systems can be classi�ed as one-way or
multi-way: one-way constraints are systems where each value is de�ned by one equa-
tion, so that constraints can be solved by propagation as performed by spreadsheet
recalculation; multi-way constraints are those where any variable of an equation can
trigger an update and where the constraints for a variable can be expressed via a
system of equations [SMFBB93].

One-way constraints are a restricted case of multi-way constraints; traditionally,
data�ow systems can be seen as an example of one-way constraint systems [DFR14].
For this reason, the term �constraint system� is more often understood to refer
to systems based on multi-way constraints: in [ASS96], for example, it is stated
that �nondirectionality of computation is the distinguishing feature of constraint-
based systems�. The power of a multi-way constraint system depends on the power
and e�ciency of the solver used to satisfy its systems of equations. For example,
Cassowary [BBS01] is a widely used constraint solver supporting linear equations
and inequalities. Since we want to focus on core language semantics rather than
solver algorithms, our work will restrict itself to traditional data�ow languages, or,
in other words, those with one-way constraints only. From a data�ow point of view,
a constraint update is a modi�cation of the structure of the data�ow graph.

Chapter 3

Design alternatives for data�ow

UI-level languages

Research on the data�ow paradigm has seen a decrease in activity since the early
1990s. The revolution of visual languages inspired by GUI systems that was ex-
pected by some never came to pass, as object-oriented programming systems re-
mained textual. Massively-parallel data�ow hardware architectures proved di�cult
to implement e�ciently and are now historical artifacts�modern GPUs obtain mas-
sive parallelism via vector processing based on imperative machine code.

Practical use of data�ow languages, however, has not gone away, and it is ar-
guably more widespread than ever. Data�ow is the paradigm of choice in a large
number of programmable end-user applications. Data�ow-based UIs, especially vi-
sual ones based on box-line graph representations, make it easy for the user to inspect
intermediate results and therefore understand what is going on in the application
[Hil92], making the relationships between data more concrete to the user.

So, data�ow languages continue to be created and used successfully, but mostly
away from the sphere of research. A closer look at this class of languages, especially
from the perspective of end-user programming, is long overdue. In this chapter, we
begin to explore the design space of data�ow languages by presenting a series of
design alternatives that come up in their construction.

3.1 Hils's classi�cation of design alternatives

In [Hil92], Daniel Hils presented an extensive survey of data�ow visual languages
(both domain-speci�c and general-purpose) and produced a list of design alternatives
through which those languages can be classi�ed in various axes. Here, we reuse and
expand upon this list while shifting our focus from data�ow visual languages to what
we call data�ow UI-level languages. We felt it was necessary to coin this term and
to make a distinction from the more common term �data�ow visual languages� for
two reasons.

First, we include �UI-level� because we want to focus only on data�ow languages
which take center stage as the application interface; in other words, those languages
that are central to the UI, and not an optional component. Being languages that
are integrated into an application of a speci�c domain, this classi�cation excludes

22

CHAPTER 3. DESIGN ALTERNATIVES 23

Design dimension Design alternatives

Box-line representation no; yes
Iteration no; limited; yes (cycles); yes (construct)
Subprogram abstraction no; yes
Selector/distributor no; yes
Flow of data uni-directional; bi-directional
Sequence construct no; yes
Type checking no; yes (limited); yes (all types)
Higher-order functions no; yes
Execution mode data-driven; demand-driven
Liveness level 1 (informative); 2 (signi�cant); 3 (responsive); 4 (live)

Table 3.1: Hils's design dimensions for data�ow visual languages

general-purpose programming languages.
Second, we avoid the term �visual� because we want to cover the entire spec-

trum of languages that fall within our focus, without having to worry whether a
language is visual or not. Notably missing from Hils's work is the most widely used
application-speci�c data�ow language�the spreadsheet formula language. Granted,
the relationship between data cells in a spreadsheet is presented symbolically rather
than visually, but it is remarkable how, apart from this fact, spreadsheets would �t
every other aspect of that study. Our work is concerned with semantics and not
syntax; the visual presentation of a language is a syntactic feature.

Apart from this distinction on the criteria for selecting languages, the list of
design alternatives can be directly reused in our work. Hils's original list of design
alternatives, summarized in Table, 3.1, can be described as follows:

• box-line representation: whether the language is presented as a visual graph
depicting nodes as boxes and edges as connected by lines or as some other
visual approach, such as hierarchical frames (this is the only syntactic aspect
discussed, but we retain it in the table for completeness);

• iteration: whether the language supports iteration, either through graph cycles
or explicit constructs for iterated execution of subgraphs (here we expand on
the original yes-no classi�cation to consider the kind of iteration facility and
also whether some limited form of iteration is available in languages which do
not allow iterating arbitrary subgraphs);

• subprogram abstraction: whether the language supports abstracting subgraphs
as reusable subprograms1;

• selector and/or distributor : whether the language includes classic data�ow
constructs for directing the routing of data through a control input. A selector
is a function σ(v1, ..., vn, k) = vk, i.e. the k-th input is forwarded to the node's
only output; a distributor is a function π(k, v), where value v is �red to the
node's k-th output;

1In Hils's original article this item was called �procedural abstraction�; we changed the term to
avoid confusion.

CHAPTER 3. DESIGN ALTERNATIVES 24

• sequential execution construct : whether the language breaks away from pure
data�ow by providing an explicit construct for specifying the order of evalua-
tion of actions, independently of data dependencies;

• type checking : in Hils's classi�cation, this entry discussed whether the arcs
in the data�ow graph are typed�in other words, whether the graph is stati-
cally typed. Statically-typed graphs provide checking when constructing the
graph, disallowing incorrect connections. A dynamically-typed graph may still
have typed tokens, resulting in type errors at runtime only. Note that this is
di�erent from static and dynamic data�ow models (as discussed in 2.2.2);

• higher-order functions : whether the language supports nodes that take func-
tions as arguments. None of the languages studied in this work support this,
and in [Hil92] this feature was only present in general-purpose languages and
in Hils's own scienti�c visualization language DataVis [Hil91];

• execution mode: whether the language is data-driven or demand-driven, as
discussed in Section 2.2.3;

• liveness level : a classi�cation developed by Tanimoto [Tan90] with a four-level
scale of liveness for visual programming tools. In level 1, �informative�, the vi-
sual representation is a non-executable auxiliary representation (like �owchart
documentation for textual programs). In level 2, �informative and signi�cant�,
the visual representation is the executable program, but program editing and
execution are separate activities. In level 3, �informative, signi�cant and re-
sponsive�, editing the visual representation triggers updates to the evaluation
of the program; there are no separate edit and execution modes. In level 4, �in-
formative, signi�cant, responsive and live�, the system updates continuously,
updating the visual representation in response to data updates, and not only
to user inputs. The liveness level a�ects the evaluation rules of the language,
since levels 3 and 4 allow changing the data�ow graph dynamically.

3.2 An extension to Hils's classi�cation

In addition to the axes of comparison proposed by Hils, we identi�ed a number of
additional criteria to compare these languages. This new list of design alternatives
for data�ow languages both informed and was informed by the study of existing
end-user applications and their languages, which we will present in the following
chapters. We hereby present an extension to the classi�cation proposed by Hils,
summarized in Table 3.2, which we believe helps to compare end-user applications
of di�erent domains and shines a light on the semantic aspects of their underlying
programming languages.

3.2.1 Data�ow model

Apart from the classi�cation between data-driven and domain-driven data�ow, per-
haps the most important distinction in terms of semantics for a data�ow language is

CHAPTER 3. DESIGN ALTERNATIVES 25

Design dimension Design alternatives

Data�ow model static; dynamic
N-to-1 inputs no; yes (auto-merge); yes (queueing)

Time-dependent �ring no; yes
Rate-based evaluation no; synchronous; cyclo-static; quasi-static; dynamic

Separate program and UI no; yes
Indirect connections no; yes (static); yes (runtime-evaluated)
Textual sub-language no; yes (functional); yes (imperative)

Table 3.2: Additional design dimensions for data�ow end-user languages

whether its data�ow model is static or dynamic, according to de�nitions presented
in Section 2.2.2.

The choice between static and dynamic data�ow models embodies typical com-
puting trade-o�s. The static model, with a single data token present per edge, is
simpler, and thus easier to implement and also keeps memory use under control.
The dynamic model, while more complex, may produce a more e�cient execution,
maximizing the opportunities for exploiting parallelism.

The question of which one is easier to understand, especially in the context of
end-user programming, is not at all obvious. On the one hand, the static model
is conceptually simpler and program execution may be easier to introspect. On
the other hand, from the user's point of view the restrictions may seem arbitrary:
in a number of situations the user may justi�ably want to specify cycles (iterative
�nancial calculations, audio-delay feedback, etc.); the dynamic model may present
a more free-form experience for the user. Still, misusing cycles is an easy way for
the user to make their program go haywire.

3.2.2 N-to-1 inputs

A practical question that is closely related to the data�ow model is whether the
language allows what we will call �N-to-1 inputs� into a node. A node in a data�ow
graph represents a unit of functional execution and may have multiple inputs, akin to
a function f(a, b, c) with multiple input arguments. The question here is whether the
language allows multiple edges connecting to a single input port in a node�in our
analogy, that would mean having multiple incoming values for argument a available
at the time of executing f .

Traditional static data�ow models usually forbid N-to-1 inputs. When two input
signals are to be entered to a single input port, an explicit �merge� node needs to be
added, which applies some logic to decide which of the inputs is forwarded to the
node.

When N-to-1 inputs are allowed, the language needs a policy for dealing with
them. Languages employing a dynamic model featuring input queues may naturally
allow data from di�erent sources into a single queue. In static data�ow models,
N-to-1 inputs may be allowed by making the merge operation implicit.

It is interesting to note that depending on the representation of the data�ow
graph, N-to-1 inputs can be not only semantically disallowed, but be made impos-

CHAPTER 3. DESIGN ALTERNATIVES 26

sible to express syntactically. In a typical textual language, one simply cannot pass
two di�erent variables at once to the �rst argument of a function. That is the case,
for example, in spreadsheet formula languages.

3.2.3 Time and rate-based evaluation

An aspect of program evaluation that is not so much a design decision as it is a
domain-dependent requirement is the need to take time into account. If a pro-
grammable application needs to process events which happen in a time-dependent
manner or according to �xed rates, that needs to be re�ected in its language. Still,
when this necessity arises there is still a design space to be explored on how to
handle it.

There are two ways to consider the issue of time. One is that of rate-based
execution, which refers to the need of consuming or producing data at a certain
frequency. The other is that of time-dependent nodes, that is, nodes that behave
di�erently depending on the time when they were �red [Wip10].

The handling of rate-dependent data often brings performance concerns. Out-
side of the world of end-user programming, the signal-processing community has
been using data�ow models for decades for handling data streams e�ciently, while
taming the complexity of dynamic data�ow models. Static data�ow models have
not only bounded memory, but their scheduling can also be determined ahead-of-
time, allowing for e�cient compilation. However, handling one token at a time is
a severe limitation for stream processing. Synchronous data�ow [LM87] is an ex-
tension of the model in which the number of data samples produced or consumed
by each node on each invocation is speci�ed a priori. It still allows compile-time
memory and scheduling analysis. Cyclo-static data�ow [BELP95] extends the ex-
pressiveness of the synchronous model while retaining its analysis properties. In it,
the consumption and production rates for a node can vary over time, respecting a
predetermined cycle. A number of other models have also been proposed to further
extend the model of computation: quasi-static models such as boolean-controlled
data�ow [Buc93] and parameterized data�ow [BB01] attempt to restrict dynamic
scheduling to data-dependent nodes while statically scheduling the rest of the graph,
with further enhancements continuing to be an area of research [FZHT13, SFG+15].

Time-dependency is closely related to rate-dependency, since predictable rates
at a known clock speed results in predictable times, but rate-based evaluation may
also be motivated by concerns other than time, such as memory e�ciency as bu�er
sizes can be minimized with optimized schedules. Time-dependent execution refers
to all sorts of dependency on time, such as nodes that return the current time, delay
nodes that pause for a given number of microseconds, and so on. Supporting this
kind of nodes has its own set of concerns as it can bring a level of indeterminacy to
the evaluation, a�ecting scheduling.

In the context of end-user programming, an application with rate-dependent
data processing may combine rate-based and non-rate-based events (e.g. handling
audio streams and button clicks). The interaction between these two worlds in the
evaluation engine of the language also needs to be taken into account.

CHAPTER 3. DESIGN ALTERNATIVES 27

3.2.4 Separate programming and use views

Another design decision that is worth observing in an end-user programmable ap-
plication is whether it presents separate interface views for editing the data�ow
program and for using the resulting user-written program, or whether use of the
program happens in the same interface where it is edited. By �separate interface
views� we mean here completely distinct presentations: for example, one �edit� view
presenting a box-line diagram as the user constructs their program and a �use� view
presenting a form when they use it.

Note that this is di�erent from the question of having separate �edit� and �use�
modes in the �rst place, which is the distinction between Tanimoto's liveness levels
2 and 3 [Tan90]. These design aspects are orthogonal: an application may present
separate �edit� and �use� modes within a single UI paradigm, characterizing liveness
level 2; or it could feature distinct UIs for use and editing and yet allow those to be
used simultaneously and in a responsive, non-modal manner matching liveness level
3 or 4.

While strictly speaking the existence of separate views for development and use is
a matter of presentation, and hence with immediate e�ects on syntax, we claim that
this design decision is most closely related to a language's pragmatics: having the
�source program� always visible or not is a clear indicator of the language's intended
mode of use. A language which con�ates the use and programming interfaces clearly
intends the user and programmer to be one and the same, while a language with
separate interfaces for these two scenarios may also steer people towards di�erent
roles. Most important to our concerns, here, is whether this design choice for the
application a�ects the overall design of its programming language.

It is also important to note that having separate UIs for creating the user-
developed program and using it doesn't mean that the language is at a lower layer
according to the architecture discussed in Section 2.1.2. The language continues to
be UI-level as long as the main interface for producing documents in the application
consists of the environment for interacting with the language. This does not change
if once the user is done composing the document (that is, writing the program),
they switch to another UI mode for using it.

3.2.5 Indirect connections

Data�ow programs are constructed as graphs, and applications using this model
need to employ some representation to depict nodes and their connections. The
explicitness of relationships between units of computations is arguably a big part
of the appeal of data�ow for end-user programming. However, as programs grow in
size, graph representations can grow unwieldy. Scalability in visual representations
is a concern, embodied in the folk aphorism known as the �Deutsch limit�, which
states that visual languages cannot have e�ectively more than 50 visual primitives
on screen at the same time [McI98]. A way around this issue is to introduce indirect
connections. This presents a trade-o�, however: while it reduces visual clutter, it
does away with the aforementioned explicitness of relationships.

This is not only a matter of representation, and this becomes clearer when we
consider the most popular example of indirect connection in textual languages: a

CHAPTER 3. DESIGN ALTERNATIVES 28

pointer. Indirect connections whose targets are determined at runtime, such as
pointers and references, increase the expressive power of the language. This can
also have far-reaching impacts to its semantics. For one, node scheduling can no
longer be performed statically. In opposition, if the target of an indirect connection
is constant, this indirect connection is not unlike a connector in old �owcharts, used
to transfer �ow from one page to the next.

3.2.6 Textual sub-language

The �nal dimension of design we enumerated is the presence or absence of a textual
sub-language included within the UI-level language presented to the user.

The presence of textual sub-languages is a common pattern, even in visual lan-
guages. A typical use for them is representing mathematical expressions, since
textual syntax based on mathematics such as a - b + 5 is natural and even some
computer conventions such as * and / for multiplication and division have become
broadly understood.2

We are also interested in the paradigm of this textual sub-language, as it is
indicative of the level of integration with the data�ow language as a whole. A func-
tional sub-language is a natural match to the host data�ow language, representing
solely a syntactic shortcut. If the textual sub-language includes imperative features,
however, this necessarily means that it goes beyond data�ow and extends the core
language's semantics.

3.3 Non-data�ow UI-level languages

To make the boundaries of our scope clearer, it is worth dedicating a few words to
UI-level languages that fall outside of the data�ow model.

Since end-user applications tend to be in general document-centric, with the
user interface dominated by the �current document� and the interaction focusing
on manipulating this document, it is natural that data-oriented approaches become
appealing choices when one wants to enable end-user programming. However, we do
not claim that data�ow languages are the best model of programmable interaction
for all kinds of end-user applications.

For example, applications employing a storytelling paradigm [LHML08, MTdS13]
bene�t from a control-oriented model. In these scenarios, the fundamental building
block for the user's programming experience is the sequencing construct: �this hap-
pens, then that happens�. Sequencing is notably absent in the pure data�ow model.
However, as we will see in Chapter 6, a data�ow language may include it to simplify
operations involving timing.

It is possible to combine data and control �ow in graphs. That is the case

2One might argue that even in typical programming languages, the sub-grammar of mathe-
matical expressions (including relational and logical operators) is an embedded domain-speci�c
language of its own, as it usually contains a number of syntactic rules that do not apply anywhere
else in the language, such as in�x operators and precedence rules, and that are often similar even
in languages which otherwise vary widely.

CHAPTER 3. DESIGN ALTERNATIVES 29

of Blueprints3, the graphical language used for gameplay scripting in the Unreal
game engine. There are di�erent kinds of edges in the graph, representing either
data connections in data�ow style, or control-�ow sequencing. Typical Blueprints
programs, however, are of an imperative nature, and the resulting graph resembles
a traditional �owchart. This kind of language, therefore, falls beyond our intended
scope in the discussion of data�ow semantics.

3.4 Case studies

In the following chapters, we will present in-depth case studies analyzing the seman-
tics of three end-user programmable applications:

• Pure Data, a multimedia application focused on audio synthesis widely used
by the computer music community;

• the spreadsheet formula language, as used in Excel, LibreO�ce and Google
Sheets;

• LabVIEW, an engineering application focused on data acquisition.

Those languages were chosen because of their relevancy, their distinct domains, and
because they cover di�erent points of the language design space in many aspects.
We modelled their semantics by implementing de�nitional interpreters for them in
Haskell, written in the style of structural operational semantics. Each interpreter
is written as a set of evaluation functions, one for each language construct. As a
whole, this set serves as a speci�cation of the language being interpreted. These
functions take as inputs the current state of the execution environment and a lan-
guage construct to be evaluated, and return the new state of the environment after
evaluation of the construct.

The interpreters do not intend to be a complete speci�cation of each language,
but aim to capture the notable features of their semantics. We will discuss the
languages in terms of the various design dimensions presented in this chapter. We
will see to which extent these languages are purely declarative, how time a�ects the
�ow graph, the semantics of iteration constructs, their support for abstraction, and
so on. In these studies, we identify the common patterns that are present, assessing
to which extent those languages are �variations on a theme�. We also pinpoint
aspects where their ad hoc designs show.

The underlying goal is to understand the required functionality expected by
applications for data�ow-based interfaces and how di�erent languages solve similar
problems. Also, having these interpreters side-by-side allows us to reason on the
designs of those languages under similar terms.

3https://docs.unrealengine.com/latest/INT/Engine/Blueprints/

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/

CHAPTER 3. DESIGN ALTERNATIVES 30

3.5 Discussion: On the use of de�nitional inter-

preters

Providing the de�nition of a language through the use of a de�nitional interpreter
written in another language is a classic technique for describing semantics. In his
1972 paper, Reynolds [Rey72] describes the process of writing de�nitional inter-
preters, introducing the idea of defunctionalization and an early description of con-
tinuations. Both techniques were put to use in our interpreters.

Writing an interpreter for a language, at �rst glance, seems like a way to un-
avoidably consider its entire semantics, since all constructs need to be described
in the precise language of computer code. However, as observed by Reynolds, the
primary concern when writing a de�nitional interpreter is being aware of which as-
pects of the language used to implement the interpreter (which Reynolds calls the
de�ning language) leak into the semantics of the language to be interpreted (called
the de�ned language). Using a construct of the de�ning language to implement the
same construct in the de�ned language gives us a working implementation, but fails
to describe what the semantics of the construct is.

In our interpreters, we made conscious decisions of which semantic aspects to
explicitly implement and which ones not to. Aspects which are not related to the
data�ow evaluation logic are orthogonal to our discussion and not of particular in-
terest, so they were simply reused from the de�ning language, in our case, Haskell:
the addition of numbers, for example, is simply the addition as in Haskell, with
the same over�ow rules, etc. Aspects which are crucial to the data�ow logic were
carefully separated: Haskell's lazy evaluation semantics do not leak into our de�ned
languages (interpreters are defunctionalized, so both eager and lazy evaluation are
explicitly implemented). We also avoided the more sophisticated features of Haskell
such as monads and type classes, using the language as much as possible as a form
of executable λ-calculus (albeit one with a considerable amount of notational conve-
nience). We hope that this will also prove bene�cial for the reader unfamiliar with
Haskell. At the same time, we consider a description written in a programming lan-
guage to be more in line with the interdisciplinary nature of this work, as opposed
to one written in the notation of operational semantics used by the programming
language community.

It is important to stress here that a de�nitional interpreter is not written as
a �prototype� interpreter. A prototype is typically a concise implementation of a
subset of a program, written to give an idea of how the �nal product would work.
Our concern in a de�nitional interpreter is with the precise speci�cation of the
de�ned language, and while we are implementing subsets of languages, we sacri�ce
concision whenever precision is important. The end result is quite di�erent from a
typical prototype. In particular, no care is given to performance: time, for example,
is implemented by simulating the clock and incrementing it manually, resulting in a
deterministic and precise description of events.

Finally, using an executable interpreter provides us with an easy way to test our
implementation (and hence our de�nition) with larger, somewhat more practical
examples.

Chapter 4

Case study: Pure Data

Pure Data [P+15] (also known as Pd) is a graphical language originally designed
for music and later expanded for multimedia in general via extension packages. It
is widely used in the computer music community [BH15], and is the free software
successor of the successful commercial product Max/MSP1, created by the same
author.

4.1 Overview of the language

In this section, we give a presentation of the application, which doubles as an
overview of its UI-level language. When a user opens Pure Data, they are greeted
with a main window which contains the main menu and a blank log panel. The
user's �rst step is to create a new �le or open an existing one, which then opens a
canvas window where the data�ow graph representing audio synthesis operations is
edited and used.

4.1.1 Nodes and values

In Pure Data, a program, called a patch in Pd jargon2, is represented as a graph
of nodes (operations) and edges (the �ow of data between them). The user creates
nodes of di�erent kinds in a canvas and connects them via wires. Some of these nodes
are interactive, triggering the output of audio waves or changing the parameters that
control the shape of these waves.

Data �owing between nodes may be either discrete messages (numbers, strings,
or lists of these base types) or audio data. Nodes in Pure Data have creation
arguments, input ports (inlets) and output ports (outlets). The creation arguments
are the initial contents of nodes, given by the programmer via a simple textual
language. A node is of one these types:

• atom box - represents a value which can be edited by the user while in run
mode; editing the value (typing a new number or via the mouse scroll wheel)
sends the updated value through its output port;

1https://cycling74.com/products/max/
2In this section, terms in Pd jargon are presented in italics.

31

https://cycling74.com/products/max/

CHAPTER 4. CASE STUDY: PURE DATA 32

Figure 4.1: A patch demonstrating the oscillator node osc~, based on an example
from the Pure Data documentation.

• message box - can be clicked by the user while in run mode, producing one or
more messages;

• graphical objects - receive data and represent it visually, for example, as a plot;

• plain objects - represent Pd functions. There are two kinds of Pd functions:
those that operate on discrete messages only, and those that operate on audio
streams (denoted with a �~� su�x in their names); accordingly, inlets and
outlets are also identi�ed as handling messages, audio or both. An object
implementing an audio-processing function may have both message and audio
inlets and outlets. A non-audio object may only send and receive messages.

Figure 4.1 gives an illustrative example of a Pure Data patch. Thin lines are
message connections, thicker lines are audio connections; their types are determined
by their outlets. Boxes with a slanted top-right corner are atom boxes, editable in
�run mode�; boxes with a recessed right side are clickable message boxes.

This program produces a 880Hz sine wave (via the the [osc~] object), which has
its amplitude multiplied ([*~]) according to a linear function ([line~]) prior to being
sent to the DSP3 output ([dac~], as in �Digital-to-Analog Converter�). The sine
wave is also sampled at a rate of 500Hz ([metro 500]) into a visual representation
([tabwrite~ view]). The user may interact with the program by setting a new
frequency to the oscillator (typing in new values in the atom box that initially
contains �880�), by clicking the message boxes that recon�gure the linear function
([0 100], which will con�gure [line~] to produce a slope from its current value to
0 over the course of 100ms, or �0.1 1000�, which will cause the value to slide to
0.1 over 1s) or by toggling the update of the graph by sending the value [0] or [1]
to [metro 500], done here via an indirect connection for demonstration purposes,
sending the value through a receiver object declared as [receive toggle]. We will
expand on these concepts below.

3Digital Signal Processing

CHAPTER 4. CASE STUDY: PURE DATA 33

4.1.2 Graph evaluation

Pure Data has two modes of execution: an edit mode in which the graph structure
can be edited, and a run mode in which input values can be produced by interacting
with the graph. The DSP engine can be toggled on or o� independently of the
mode of execution. Most importantly, the data�ow program is running at all times:
the user can create nodes in the graph, switch to run mode, trigger a loop that
produces audio waves, return to edit mode and modify the graph while the loop is
still running.

Execution in Pure Data is synchronous. The tree of DSP nodes is processed
periodically, updating their bu�ers and propagating audio data. A complete prop-
agation of audio is called a DSP tick, during which only audio nodes are processed.
When an input or timing event happens, the entire cascade of messages produced is
processed in sequence, before the next DSP tick [P+15]. This means that excessive
processing of messages may produce noticeable audio drop-outs, but the audio bu�er
with a user-speci�ed size mitigates this.

It is possible to wire nodes in the Pd interface so that cycles in the graph are cre-
ated. If those graphs involve audio wires, the resulting loops in the audio processing
chain are detected and propagation is halted. When cycles happen in the message
�ow, messages may also produce in�nite loops, but being dynamic they cannot be
detected a priori: those are caught during run mode, reporting a stack over�ow.

4.1.3 Messages and the textual sub-language

Nodes in Pure Data are similar to spreadsheet cells, in the sense that they are
primarily containers for a textual language. Once the user selects �Object� or �Mes-
sage� in the �Put� menu, a new node with the corresponding shape appears in the
canvas and the keyboard focus switches to it immediately. The user then types in
the contents of the node, based on which Pure Data determines its number of inlets
and outlets, which appear as connectors at the top and bottom of the node's box.
For example, in Figure 4.1 node [metro 500] has two inlets (with only the left one
connected) and one outlet; node [dac~ 1] has only one inlet and no outlets.

When editing the graph, apart from connecting outlets to inlets and positioning
nodes, everything else is done with the textual language. It is a very basic imperative
command language, more similar to the language of primitive interactive shells than
that of typical programming languages. When a command is entered in an object
box, the �rst token represents the internal function to be executed (e.g. [osc~],
[metro]) and the remaining tokens are arguments to that function. In message
boxes, multiple commands may be entered, separated by a semicolon. The �rst
command is always a message to be sent through the outlet of the message box;
in subsequent commands, the �rst token is the receiver and the remaining tokens
are messages. Values received in inlets are available for token substitution using
numbered variables such as $1.

The system of messaging via named receivers allows the program to send data
between nodes that are not explicitly linked via connections. The relationship be-
tween a message and a receiver can be thought of as an implicit edge in the data�ow
graph. Since the textual language of messages supports variable arguments fed via

CHAPTER 4. CASE STUDY: PURE DATA 34

(a) (b) (c)

Figure 4.2: Behavior of hot and cold inlets in Pure Data

input ports and the �rst argument of a command can be set to a variable, receiver
destinations can change during execution: this makes the data�ow graph, in e�ect,
mutable at runtime. This, however, is limited to discrete messages, and only the
destination of a message can be changed at runtime, and not the identi�er a receiver
is �listening� to. The �ow of audio data cannot be re-routed while in run mode, but
disconnections can be simulated multiplying a signal by 0.

A precise de�nition of the language semantics will be given in Section 4.2, but
to give a feel of the language we will describe two examples from Figure 4.1. The
�rst example is the simplest use of message boxes: message box [0 100] simply sends
tokens 0 and 100 to [line~] when clicked. The second example demonstrates variable
substitution and indirect connections. When the user clicks message boxes [0] or [1],
this feeds the value to message box [;pd dsp $1;toggle $1], which contains three
commands. The �rst command is empty, indicating there is nothing to be sent to
the outlet port. The second command is sent to receiver pd, which is Pure Data's
internal receiver�here it is used to enable or disable the audio engine. The third
command sends the value 0 or 1 to the user-de�ned receiver toggle.

4.1.4 Node triggering

To avoid triggering functions with multiple arguments many times, as the input
arguments arrive through di�erent paths of the graph, Pure Data has the notion
of hot and cold input ports. Only the hot inlet triggers the node; data arriving
to a cold inlet stays bu�ered there and is only consumed when a hot input port is
triggered. This allows, for example, to create a �float� node that increments its
value every time it is triggered, by sending its output to an increment node (�+ 1�)
and sending the result back via a secondary, cold inlet (see Figure 4.2(a)). This
will not create an in�nite loop, because the result of the increment will only be
consumed next time the hot inlet of the node is triggered.

Due to the way Pure Data handles messages, for some node types the order in
which connections are performed in its interface can change the semantics of the
resulting graph, so that two visually identical graphs can produce di�erent results,
depending on the order in which the lines between nodes were drawn in the UI. This
behavior is documented as a possible user pitfall in the documentation [P+15]. The
example in Figure 4.2(b) was taken directly from the documentation, which says:
�Here, I connected the left inlet before connecting the right hand one (although
this is not evident in the appearance of the patch)�. In fact, disconnecting node [6]
from [+] and connecting the left inlet �rst makes it work as intended, updating the
bottom box with the double of the top box as we edit the value at the top. The

CHAPTER 4. CASE STUDY: PURE DATA 35

documentation suggests as a workaround disambiguating the graph by using the
object [t] (shorthand for [trigger]), which triggers its outlets from right to left, as
depicted in Figure 4.2(c).

4.2 An interpreter modeling the semantics of Pure

Data

We produced an executable model of the core semantics of Pure Data [P+15, Zmö14]
written in Haskell, which includes stateful nodes for multiple data types, message
and audio objects, identi�er-based message passing and the intra-node language for
message objects.

Our model implements a simulation of the run mode, in which the graph is �xed
and input events are fed into it. It replicates the synchronous behavior of Pure
Data, processing cascades of message events and DSP ticks for propagating audio
bu�ers. It does not implement �abstractions� (which is Pure Data jargon for loading
subprograms from separate �les), and dollar-expansion in object boxes, which is only
used when loading abstractions. Still, our model is complete and precise enough so
that the numeric values produced in audio bu�ers can be converted to a sound �le
format and played back.

This entire section describing the interpreter was written in Literate Haskell
[HL15], and is a description of the entire interpreter, including its complete listings.
The text was written so that it should be understandable without a detailed reading
of the source code, but the sources are nevertheless included for completeness and
as supporting material for the interested reader. The source code in .lhs format
(LATEX with embedded Haskell) is also available at https://hisham.hm/thesis/.

This implementation uses only standard modules included in the Haskell Plat-
form:

import Data.Sequence (Seq , fromList , index , update, foldlWithIndex)
import qualified Data.Sequence as Seq (length)
import Data.Foldable (foldl ′, toList)
import Data.List (sort , intercalate, find)
import Text .Printf
import Data.Fixed
import Data.Binary .Put
import qualified Data.ByteString .Lazy as ByteString
import Control .Monad
import Debug .Trace

4.2.1 Representation of programs

A Pure Data program (called a �patch�) is represented with the PdPatch data type
in our model, which contains a sequence of nodes, a sequence of connections between
nodes, and the pre-computed topological sort of audio connections (stored as a list
of integer indices).

https://hisham.hm/thesis/

CHAPTER 4. CASE STUDY: PURE DATA 36

data PdPatch = PdPatch {
pNodes :: Seq PdNode,
pConns :: Seq (·B ·),
pDspSort :: [Int]
}

The primitive values in Pure Data are called �atoms�: they can be numbers,
strings (called �symbols�) or opaque pointers. Opaque pointers are used by graphical
objects only, so those will be omitted here.

data PdAtom = PdFloat Double
| PdSymbol String

deriving (Eq ,Ord)

instance Show PdAtom where
show (PdFloat f) = show f
show (PdSymbol s) = s

Nodes may be objects, atom boxes or message boxes. In Pure Data, objects are
initialized via �creation arguments�: a string of arguments, represented here as a list
of atoms. We also store in an object its number of inlets and outlets. Atom boxes
and message boxes always have one inlet and one outlet each.

data PdNode = PdObj [PdAtom] Int Int
| PdAtomBox PdAtom
| PdMsgBox [PdCmd]

deriving Show

Message boxes contain commands written in the textual sub-language of Pure
Data. Here, we represent commands not as a string, but in parsed form, consisting
of a receiver and a list of tokens (which may be literal values or numbered references
to inlet data (written $n in the textual language). Note that a single message box
may contain a number of messages.

data PdCmd = PdCmd PdReceiver [PdToken]
deriving Show

data PdReceiver = PdToOutlet
| PdReceiver String
| PdRDollar Int
| PdReceiverErr

deriving Show

data PdToken = PdTDollar Int
| PdTAtom PdAtom

deriving Show

Finally, we represent the connections of the graph as a sequence of adjacency
pairs, where each pair is represented as a (·B ·) value, itself composed of two pairs:
the node index and outlet index for the source, and the node index and inlet index for

CHAPTER 4. CASE STUDY: PURE DATA 37

the destination. Throughout the interpreter, we will often use the names (src, outl)
and (dst, inl) to refer to those indices.

data (·B ·) = ((Int , Int) B (Int , Int))
deriving Show

4.2.2 Representation of states

The representation of a state in our interpreter is a structure containing the following
values: the step count, which will double as our timestamp, since Pure Data has
time-based execution; the state for each node; the text contents of the Pd logger
window; and future events scheduled by the interpreter.

data PdState = PdState {
sTs :: Int ,
sNStates :: (Seq PdNodeState),
sLog :: [String],
sSched :: [PdEvent]
}

deriving Show

The state for each node, on its turn, contains a sequence of atom bu�ers, one for
each inlet, and an internal memory (represented as a list of atoms). Memory con-
sumption during execution is therefore variable, characterizing a dynamic data�ow
model.

data PdNodeState = PdNodeState (Seq [PdAtom]) [PdAtom]
deriving Show

We represent events with a timestamp, the node index indicating which node
was triggered, and a list of atoms representing the event data (such as the number
entered by the user in an atom box).

data PdEvent = PdEvent {
eTs :: Int ,
eNidx :: Int ,
eArg :: [PdAtom]
}

deriving (Show ,Eq ,Ord)

4.2.3 Execution

The execution mode of Pure Data is data-driven. The user triggers events via its
interface, and those events cause a cascading series of �rings. The user may trigger
events by clicking nodes or entering numbers (possibly using MIDI devices, which
are functionally equivalent to entering numbers).

CHAPTER 4. CASE STUDY: PURE DATA 38

4.2.3.1 Main loop

The execution of the interpreter, therefore, is a loop of evaluation steps. The driver
function takes a number of steps, the patch to run, a list of timed events, accumu-
lating a list of states. We are interested in all states, not only the �nal one, because
we want to be able to inspect the results of the execution over time.

Note that the patch itself, p, remains unchanged over time. This is typical of a
language with liveness level 2: the patch cannot be modi�ed during execution.

runSteps :: Int → PdPatch → [PdEvent]→ [PdState]
runSteps nSteps p events =

reverse $ snd $ foldl ′ acc (events , [initialState p]) [0 . . (nSteps − 1)]
where

absTime :: [PdEvent]→ Int → [PdEvent]
absTime evs ts = map (λe → e {eTs = (eTs e) + ts }) evs
acc :: ([PdEvent], [PdState])→ Int → ([PdEvent], [PdState])
acc (events , states@(s : ss)) step =

(sort (evsnext ++ absTime (sSched s ′) step), s ′ : states)
where

(evscurr, evsnext) = span (λ(PdEvent ts)→ ts ≡ step) events
s ′ = runStep p (s {sSched = []}) evscurr

The loop above extracts the sublist of relevant events for the current timestamp,
and hands it over to the main evaluation function, runStep, which, given a patch,
the current state, and a list of events, produces a new state.

Processing a step may produce new future events to be scheduled. These are
sorted along with the existing events of the input. Runtime events are produced by
the interpreter using relative timestamps (where 0 means �now�), so we adjust them
to absolute time using auxiliary function adjTime.

The function runStep processes events and the DSP tree. Following the speci�ed
semantics of Pure Data, this happens in an alternating fashion: all pending messages
for a given timestamp are handled, and then the entire DSP tree is processed.

runStep :: PdPatch → PdState → [PdEvent]→ PdState
runStep p s events =

let
s ′ = runImmediateEvents p $ foldl ′ (runEvent p) s events
s ′′ = if (sTs s) ‘mod ‘ 2 ≡ 0

then runDspTree p s ′

else s ′

in
s ′′ {sTs = (sTs s) + 1}

In our model, the DSP tree is processed at half the rate of the message-based
events (hence, runDspTree is called at every other run of runStep). Assuming that
a step in our interpreter is 1 ms, this means the DSP engine runs once every 2 ms
(the default con�guration of Pd runs the engine every 1.45 ms; with a 64-sample
bu�er, this amounts to an audio sample rate of 44,100 Hz � with this simpli�cation
in our interpreter, we get 36,000 Hz).

CHAPTER 4. CASE STUDY: PURE DATA 39

The Pure Data documentation speci�es that "In the middle of a message cascade
you may schedule another one at a delay of zero. This delayed cascade happens after
the present cascade has �nished, but at the same logical time". So, events sched-
uled during the current step with a relative timestamp set to zero are immediately
executed before running the DSP tree:

runImmediateEvents :: PdPatch → PdState → PdState
runImmediateEvents p s =

let z = [ev | ev ← (sSched s), eTs ev ≡ 0]
in if z ≡ []

then s
else runStep p s z

4.2.3.2 Event processing

Two kinds of events can be triggered by the user. Message boxes may be clicked,
processing all commands stored inside them, or new numeric values may be entered
into atom boxes. We do it producing a synthetic �ring of the relevant node.

runEvent :: PdPatch → PdState → PdEvent → PdState
runEvent p s event@(PdEvent ts iN args) =

fire p (index (pNodes p) iN) args (iN , 0) s

The fire function invokes the appropriate action for a node, producing a new
state.

fire :: PdPatch → PdNode → [PdAtom]→ (Int , Int)→ PdState → PdState

Depending on the type of node, we perform di�erent actions. For message boxes,
we feed the incoming atoms into the inlet, and then we fold over its commands
triggering them, like when they are clicked by the user. As we will see below in the
de�nition of runCommand , this may �re further nodes either directly or indirectly.

fire p (PdMsgBox cmds) atoms (iN , inl) s =
let

(PdNodeState ins mem) = index (sNStates s) iN
ns ′ = PdNodeState (update inl atoms ins) mem
s ′ = s {sNStates = (update iN ns ′ (sNStates s))}

in
foldl ′ (runCommand p iN) s ′ cmds

For objects and atom boxes, we hand over the incoming data to the sendMsg
handler function, which implements the various behaviors supported by di�erent
Pure Data objects. The function sendMsg returns a tuple with the updated node
state, log outputs produced (if any), data to be sent via outlets and new events
to be scheduled. We update the state with this data, adjusting the node index of
the returned events to point them to that of the current node (iN): a node can

CHAPTER 4. CASE STUDY: PURE DATA 40

only schedule events for itself. Finally, we propagate the data through the outlets,
processing them from right to left, as mandated by the Pure Data speci�cation.

fire p node atoms (iN , inl) s =
let

ns = index (sNStates s) iN
(ns ′, logw ′, outlets , evs) = sendMsg node atoms inl ns
s ′ = s {

sNStates = update iN ns ′ (sNStates s),
sLog = (sLog s) ++ logw ′,
sSched = (sSched s) ++ (map (λe → e {eNidx = iN }) evs)
}
propagate :: PdState → ([PdAtom], Int)→ PdState
propagate s (atoms , outl) =

if atoms ≡ []
then s
else forEachInOutlet p (iN , outl) atoms s

in
foldl ′ propagate s ′ (zip (reverse outlets) [length outlets − 1 . . 0])

When propagating data, we send it to every connected outlet of a node. A node
may have multiple outlets and multiple nodes can be connected to a single outlet.
This function takes the patch, a (node, outlet) pair of indices indicating the source
of the data, the data itself (a list of atoms), and the current state. It folds over
the list of connections of the patch, �ring the data to the appropriate inlets of all
matching connections.

forEachInOutlet :: PdPatch → (Int , Int)→ [PdAtom]→ PdState → PdState
forEachInOutlet p srcPair atoms s =

foldl ′ handle s (pConns p)
where

handle :: PdState → (·B ·)→ PdState
handle s (from B (to@(dst , inl)))
| srcPair ≡ from = fire p (index (pNodes p) dst) atoms to s
| otherwise = s

Pure Data commands are written in its textual language. Commands may in-
clude references to data obtained via inlets of the node using the $n notation. For
example, sending 10 20 to a message box containing pitch $2 velocity $1 con-
nected to an object box print will print to the log window the string pitch 20
velocity 10.

In function runCommand below, we run a given command cmd on a node (with
index iN) by �rst obtaining the inlet data currently stored in the node state. Then
we perform $-expansion on the command's tokens. Then, based on the receiver of
the message, we route it through the graph (forwarding it to every outlet, in a classic
data�ow fashion) or symbolically, sending it to all objects con�gured as a receivers
for the given name.

CHAPTER 4. CASE STUDY: PURE DATA 41

runCommand :: PdPatch → Int → PdState → PdCmd → PdState
runCommand p iN (PdState ts nss logw evs) cmd =

let
(PdNodeState ins mem) = index nss iN
inletData = index ins 0
(recv , atoms) = dollarExpansion cmd inletData
ns ′ = PdNodeState (update 0 [] ins) mem
nss ′ = update iN ns ′ nss
s ′ = PdState ts nss ′ logw evs

in
case recv of
PdToOutlet →

forEachInOutlet p (iN , 0) atoms s ′

PdReceiver r →
forEachReceiver p r atoms s ′

PdReceiverErr →
printOut [PdSymbol "$1: symbol needed as msg destination"] s ′

The process of $-expansion is a simple substitution, where the receiver must be
a string. Invalid indices are converted to zero. (In Pure Data, they also produce an
error message to the log window, but here we omit this for brevity.) We also handle
here a few syntactic shortcuts: a message with a sole number like 1.0 expands to
float 1.0; lists starting with a number get the pre�x list.

ffor a f = fmap f a

dollarExpansion :: PdCmd → [PdAtom]→ (PdReceiver , [PdAtom])
dollarExpansion (PdCmd recv tokens) inlData =

(recv ′, atoms ′)
where

inlAt n = if n < length inlData then inlData !! n else PdFloat 0
recv ′ =

case recv of
PdRDollar n →

case inlAt n of
PdSymbol s → PdReceiver s

→ PdReceiverErr
→ recv

atoms ′ =
normalize $ ffor tokens (λtoken →

case token of
PdTDollar n → inlAt n
PdTAtom atom → atom

)
normalize atoms@[PdFloat f] = (PdSymbol "float" : atoms)
normalize atoms@(PdFloat f : xs) = (PdSymbol "list" : atoms)
normalize atoms = atoms

Indirect connections are handled similarly to outlet connections, but instead

CHAPTER 4. CASE STUDY: PURE DATA 42

of folding over the list of connections, we fold over the list of nodes, looking for
objects declared as receive name. Note that the search happens over the statically-
declared list of nodes of the patch. While it is possible construct a message at
runtime and determine the receiver dynamically, it is not possible to change the
identi�er of a receive node at runtime.

forEachReceiver :: PdPatch → String
→ [PdAtom]
→ PdState → PdState

forEachReceiver p name atoms s =
foldlWithIndex handle s (pNodes p)
where

handle :: PdState → Int → PdNode → PdState
handle s dst (PdObj (PdSymbol "receive" : (PdSymbol rname :)))
| name ≡ rname = forEachInOutlet p (dst , 0) atoms s

handle s = s

4.2.3.3 Audio processing

The processing of audio nodes is very di�erent from that of message nodes. Before
execution, the audio nodes are topologically sorted, producing an order according to
which they are evaluated on each DSP update. For simplicity, we do not compute
this order at the beginning of execution, and merely assume it is given as an input
(in the dspSort �eld of p).

As the list of nodes is traversed, each object is triggered (applying the performDsp
function) and then the new computed value of its audio bu�er is propagated to the
inlets of the nodes to which it is connected.

runDspTree :: PdPatch → PdState → PdState
runDspTree p s =

s {sNStates = nss ′}
where

dspSort = pDspSort p
nss ′ = foldl ′ handle (zeroDspInlets (sNStates s) dspSort) dspSort

handle :: (Seq PdNodeState)→ Int → (Seq PdNodeState)
handle nss iN =

foldl ′ (propagate outputs) nss ′′ (pConns p)
where

obj = index (pNodes p) iN
ns@(PdNodeState ins mem) = index nss iN
(outputs ,mem ′) = performDsp obj ns
nss ′′ = update iN (PdNodeState ins mem ′) nss
propagate :: [[PdAtom]]→ (Seq PdNodeState)→ (·B ·)

→ (Seq PdNodeState)
propagate outputs nss ((src, outl) B (dst , inl))
| src ≡ iN = addToInlet (dst , inl) (outputs !! outl) nss
| otherwise = nss

CHAPTER 4. CASE STUDY: PURE DATA 43

Each audio node has a 64-sample bu�er that needs to be cleared before each
traversal. Note that this is di�erent from handling inlets in message objects: for
message objects, the inlets become empty once consumed. Here, we need the inlet
bu�ers to be �lled with zeros.

zeroDspInlets :: (Seq PdNodeState)→ [Int]→ (Seq PdNodeState)
zeroDspInlets nss dspSort =

fromList $ clearNodes 0 (toList nss) (sort dspSort)
where

zeroInlets :: Int → (Seq [PdAtom])
zeroInlets n = fromList $ replicate n (replicate 64 (PdFloat 0.0))

zeroState :: PdNodeState → PdNodeState
zeroState (PdNodeState ins mem) =

PdNodeState (zeroInlets (Seq .length ins)) mem

clearNodes :: Int → [PdNodeState]→ [Int]→ [PdNodeState]
clearNodes iN (st : sts) indices@(i : is)
| iN ≡ i = zeroState st : clearNodes (iN + 1) sts is
| otherwise = st : clearNodes (iN + 1) sts indices

clearNodes iN nss [] = nss
clearNodes iN [] = []

The reason why we �ll the inlets with zeros is because when multiple nodes
connect to the same inlet in a DSP object, additive synthesis is performed: the
values of the incoming bu�er are added to the current contents of the inlet bu�er,
subject to saturation (audio values are internally �oats between -1.0 and 1.0).

addToInlet :: (Int , Int)→ [PdAtom]→ (Seq PdNodeState)
→ (Seq PdNodeState)

addToInlet (dst , inl) atoms nss = update dst ns ′ nss
where

saturate (PdFloat f) = PdFloat (max (−1.0) (min 1.0 f))

satSum (PdFloat a,PdFloat b) = saturate $ PdFloat (a + b)
ns@(PdNodeState ins mem) = index nss dst
atomsold = index ins inl
atomsnew = fmap satSum (zip atomsold atoms)
ns ′ = PdNodeState (update inl atomsnew ins) mem

In Section 4.2.4.8 we will present performDsp, which implements the various
DSP objects supported by this interpreter.

4.2.3.4 Initial state

Finally, for completeness of the execution model, we present here the functions that
create the initial state.

emptyInlets :: Int → Seq [PdAtom]
emptyInlets n = fromList (replicate n [])

CHAPTER 4. CASE STUDY: PURE DATA 44

initialState :: PdPatch → PdState
initialState (PdPatch nodes) = PdState 0 (fmap emptyNode nodes) [] []

where
emptyNode node =

case node of
PdAtomBox atom → PdNodeState (emptyInlets 1) [atom]
PdObj inl → PdNodeState (emptyInlets inl) []
PdMsgBox → PdNodeState (emptyInlets 1) []

4.2.4 Operations

The graphical language of Pure Data is graph-based and contains only nodes and
edges. The contents of nodes (object boxes, message boxes and atom boxes) are
textual. Like there are two kinds of edges (message and audio), there are also two
kinds of objects. Audio-handling objects are identi�ed by a ~ su�x in their names
(the Pure Data documentation calls them �tilde objects�. In our interpreter, plain
objects are implemented in the sendMsg function (Section 4.2.4) and tilde objects
are implemented in the performDsp function (Section 4.2.4.8).

For printing to the log, we present a simple auxiliary function that adds to the
output log of the state value.

printOut :: [PdAtom]→ PdState → PdState
printOut atoms s =

s {sLog = (sLog s) ++ [intercalate " " $ map show atoms]}

The implementation of all non-audio nodes is done in the sendMsg function,
which pattern-matches on the structure of the node (which includes the parsed
representation of its textual de�nition).

sendMsg :: PdNode → [PdAtom]→ Int → PdNodeState
→ (PdNodeState, [String], [[PdAtom]], [PdEvent])

Unlike the runCommand function used in the �ring of message boxes, which
causes global e�ects on the graph evaluation (via indirect connections) and therefore
needs access to the whole state, sendMsg accesses only the node's private state,
producing a triple containing the new private node state, any text produced for the
output log, a list of messages to be sent via the node's outlets and any new events
to be scheduled.

Similarly to sendMsg , we de�ne a single function that performs the operations
for all audio-processing objects:

performDsp :: PdNode → PdNodeState → ([[PdAtom]], [PdAtom])

The performDsp function takes the object, its node state and outputs the audio
bu�er to be sent at the node's outlets, and the updated internal data for the node.

We did not implement the full range of objects supported by Pure Data since our
goal was not to produce a full-�edged computer music application, but we included
a few representative objects that allow us to demonstrate the interpreter and the
various behaviors of objects.

CHAPTER 4. CASE STUDY: PURE DATA 45

4.2.4.1 Atom boxes

When given a �oat, atom boxes update their internal memory and propagate the
value. When given a bang, they just propagate the value.

sendMsg (PdAtomBox) (PdSymbol "float" : fl) 0 =
(PdNodeState (fromList []) fl , [], [PdSymbol "float" : fl], [])

sendMsg (PdAtomBox) [PdSymbol "bang"] 0 ns@(PdNodeState mem) =
(ns , [], [PdSymbol "float" : mem], [])

4.2.4.2 An object with side-e�ects: print

The print object accepts data through its inlet and prints it to the log console. It
demonstrates the use of the log console as a global side-e�ect.

sendMsg (PdObj (PdSymbol "print" : xs)) (PdSymbol "float" : fs) 0 ns =
(ns , ["print: " ++ (intercalate " " $ map show (xs ++ fs))], [], [])

sendMsg (PdObj (PdSymbol "print" : xs)) (PdSymbol "list" : ls) 0 ns =
(ns , ["print: " ++ (intercalate " " $ map show (xs ++ ls))], [], [])

sendMsg (PdObj (PdSymbol "print" : xs)) atoms 0 ns =
(ns , ["print: " ++ (intercalate " " $ map show atoms)], [], [])

4.2.4.3 An object with hot and cold inlets: +

In Pure Data, the �rst inlet of a node is the �hot� inlet; when data is received
through it, the action of the node is performed. When data arrives in �cold� inlets,
it stays queued until the �hot� inlet causes the object to be evaluated.

The + object demonstrates the behavior of hot and cold inlets. When a number
arrives in the hot inlet, it sums the values in inlets 0 and 1 and sends it through its
outlet. When a bang arrives in the hot outlet, the most recently received values in
the inlet bu�ers are used for the sum instead.

sendMsg (PdObj [PdSymbol "+", n]) [PdSymbol "float",fl] 0
(PdNodeState ins mem) =

let
(PdFloat val0) = fl
inlet1 = index ins 1
(PdFloat val1) = if inlet1 ≡ [] then n else head inlet1
mem ′ = [PdFloat (val0 + val1)]
ns ′ = PdNodeState (update 0 [fl] ins) mem ′

in
(ns ′, [], [PdSymbol "float" : mem ′], [])

sendMsg (PdObj [PdSymbol "+", n]) [PdSymbol "bang"] 0
(PdNodeState ins mem) =

let
inlet0 = index ins 0

CHAPTER 4. CASE STUDY: PURE DATA 46

(PdFloat val0) = if inlet0 ≡ [] then (PdFloat 0) else head inlet0
inlet1 = index ins 1
(PdFloat val1) = if inlet1 ≡ [] then n else head inlet1
mem ′ = [PdFloat (val0 + val1)]
ns ′ = PdNodeState ins mem ′

in
(ns ′, [], [PdSymbol "float" : mem ′], [])

4.2.4.4 Objects producing timed events: delay and metro

The delay object demonstrates how objects generate future events. We handle four
cases: receiving a bang message schedules a tick event. When received, it outputs
a bang to the node's outlets.

sendMsg (PdObj [PdSymbol "delay",PdFloat time] inl)
[PdSymbol "bang"] 0 ns =

(ns , [], [], [PdEvent (floor time) 0 [PdSymbol "tick"]])

sendMsg (PdObj (PdSymbol "delay" : t) inl) [PdSymbol "tick"] 0 ns =
(ns , [], [[PdSymbol "bang"]], [])

The metro node, in its turn, expands on the delay functionality, implementing
a metronome: it sends a series of bang messages at regular time intervals. It also
has a second inlet which allows updating the interval.

We handle four cases: receiving a bangmessage to start the metronome, receiving
a stop message to stop it, and receiving the internally-scheduled tick when the
metronome is either on or o�.

sendMsg (PdObj (PdSymbol "metro" : xs) inl) [PdSymbol "bang"] 0
(PdNodeState ins mem) =

let
inlet1 = index ins 1
(PdFloat time) = head (inlet1 ++ mem ++ xs ++ [PdFloat 1000])
ns ′ = PdNodeState (emptyInlets inl) [PdFloat time,PdSymbol "on"]

in
(ns ′, [], [[PdSymbol "bang"]],

[PdEvent (floor time) 0 [PdSymbol "tick"]])

sendMsg (PdObj (PdSymbol "metro" : xs) inl) [PdSymbol "stop"] 0
(PdNodeState ins [PdFloat time,PdSymbol "on"]) =

(PdNodeState ins [PdFloat time,PdSymbol "off"], [], [], [])

sendMsg (PdObj (PdSymbol "metro" : xs) inl) [PdSymbol "tick"] 0
ns@(PdNodeState ins [PdFloat time,PdSymbol "on"]) =

(ns , [], [[PdSymbol "bang"]], [PdEvent (floor time) 0 [PdSymbol "tick"]])

sendMsg (PdObj (PdSymbol "metro" : xs) inl) [PdSymbol "tick"] 0
ns@(PdNodeState ins [,PdSymbol "off"]) =

(ns , [], [], [])

CHAPTER 4. CASE STUDY: PURE DATA 47

4.2.4.5 Message handlers for audio objects: osc~ and line~

Some audio objects in Pure Data also accept messages. The osc~ object imple-
ments a sinewave oscillator. Sending a �oat to it, we con�gure its frequency, which
is stored in the node's internal memory. Note that the actual oscillator is not imple-
mented here, but in the DSP handler for this object type in function performDsp,
in Section 4.2.4.8.

sendMsg (PdObj (PdSymbol "osc~" :))
[PdSymbol "float",PdFloat freq] 0
(PdNodeState ins [, position]) =

(PdNodeState ins [PdFloat ((2 ∗ pi) / (32000 / freq)), position], [], [], [])

The line~ object implements a linear function over time. It can be used, for
example, to implement gradual changes of frequency or amplitude. Its internal
memory stores values current, target and delta. It accepts a message with two
�oats, indicating the new target value and the time interval to take ramping from
the current value to the new target.

sendMsg (PdObj [PdSymbol "line~"])
[PdSymbol "list",PdFloat amp,PdFloat time] 0
(PdNodeState ins mem) =

let
[PdFloat current ,PdFloat target ,PdFloat delta] =

if mem 6≡ [] then mem else [PdFloat 0,PdFloat 0,PdFloat 0]
mem ′ =

[PdFloat current ,
PdFloat amp,
PdFloat ((amp − current) / (time ∗ 32))]

in
(PdNodeState ins mem ′, [], [], [])

4.2.4.6 Cold inlets

Since cold inlets are passive and only store the incoming data in the inlet bu�er
without executing any node-speci�c operation, the implementation for cold inlets
can be shared by all types of node.

sendMsg node (PdSymbol "float" : fs) inl (PdNodeState ins mem) | inl > 0 =
(PdNodeState (update inl fs ins) mem, [], [], [])

sendMsg node atoms inl (PdNodeState ins mem) | inl > 0 =
(PdNodeState (update inl atoms ins) mem, [], [], [])

4.2.4.7 Data objects: float and list

The float and list objects store and forward data of their respective types. They
have two inlets for accepting new data. When given data through its �rst inlet, the

CHAPTER 4. CASE STUDY: PURE DATA 48

object stores it in its internal memory and outputs the value through the outlet.
When given data through its second inlet, it only stores the value. When given a
unit event (called bang in Pure Data), it outputs the most recently received value
(or the one given in its creation argument, or zero as a fallback).

sendMsg cmd@(PdObj (PdSymbol "float" : xs) inl) atoms 0 ns =
dataObject cmd atoms ns

sendMsg cmd@(PdObj (PdSymbol "list" : xs) inl) atoms 0 ns =
dataObject cmd atoms ns

dataObject (PdObj (PdSymbol a : xs) inl) [PdSymbol "bang"]
(PdNodeState ins mem) =
let

inlet1 = index ins 1
Just mem ′ = find (6≡ []) [inlet1,mem, xs , [PdFloat 0]]

in
(PdNodeState (emptyInlets inl) mem ′, [], [PdSymbol a : mem ′], [])

dataObject (PdObj (PdSymbol a : xs) inl) (PdSymbol b : fl) | a ≡ b =
(PdNodeState (emptyInlets inl) fl , [], [PdSymbol a : fl], [])

4.2.4.8 Audio handling operations: osc~, line~ and *~

Audio handling is performed by function performDsp, which implements cases for
each type of audio object.

Object osc~ is the sinewave oscillator. It holds two values in its internal memory,
delta and position, through which a wave describing a sine function is incrementally
computed.

We handle two cases here: when the internal memory is empty, the parameters
are initialized according to the freq creation argument; when the memory is ini-
tialized, we produce the new bu�er calculating 64 new values, determine the next
position to start the wave in the next iteration, store this value in the internal
memory, and output the bu�er through the node's outlet.

performDsp obj@(PdObj [PdSymbol "osc~",PdFloat freq])
(PdNodeState ins []) =

let
values = [PdFloat ((2 ∗ pi) / (32000 / freq)),PdFloat 0]

in
performDsp obj (PdNodeState ins values)

performDsp (PdObj [PdSymbol "osc~",])
(PdNodeState ins [PdFloat delta,PdFloat position]) =

let
osc :: Double → Double → Double → Double
osc position delta idx = (position + (delta ∗ idx)) ‘mod ′‘ (2 ∗ pi)

output = map (PdFloat ◦ sin ◦ osc position delta) [0 . . 63]
nextPosition = osc position delta 64

CHAPTER 4. CASE STUDY: PURE DATA 49

mem ′ = [PdFloat delta,PdFloat nextPosition]
in

([output],mem ′)

As described in Section 4.2.4.5, the line~ object implements a linear ramp over
time. As in osc~ we handle two cases: when the internal memory of the object is
empty, in which case we initialize it; and when it is initialized with current , target
and delta values. The function varies linearly over time from current to target , after
which, it stays constant at target .

performDsp obj@(PdObj [PdSymbol "line~"]) (PdNodeState ins []) =
performDsp obj (PdNodeState ins [PdFloat 0,PdFloat 0,PdFloat 0])

performDsp (PdObj [PdSymbol "line~"])
(PdNodeState ins [PdFloat current ,PdFloat target ,PdFloat delta]) =

let
limiter = if delta > 0 then min else max
output = map PdFloat $ tail $ take 65

$ iterate (λv → limiter target (v + delta)) current
mem ′ = [last output ,PdFloat target ,PdFloat delta]

in
([output],mem ′)

The *~ object multiplies the data from inlets 0 and 1. It is used, for example,
to modify the amplitude of an audio wave.

performDsp (PdObj [PdSymbol "*~"]) (PdNodeState ins []) =
let

mult (PdFloat a) (PdFloat b) = PdFloat (a ∗ b)
output = zipWith mult (index ins 0) (index ins 1)

in
([output], [])

Finally, this is a default handler for performDsp that merely produces a silent
audio bu�er.

performDsp obj ns =
([toList $ replicate 64 $ PdFloat 0.0], [])

4.2.5 Demonstration

In Appendix A, we present a practical demonstration of the interpreter in use. We
run the patch depicted in Figure 4.3. In includes atom boxes, objects and message
boxes, and features message and audio processing, variable expansion, indirect mes-
sages and delayed execution. Running the interpreter emulates Pure Data's �use�
mode: the graph cannot be modi�ed, but atom boxes can receive new values and
message boxes can be clicked, producing events. The interpreter simulates this inter-
active experience by receiving as input a list of interaction events with timestamps.

CHAPTER 4. CASE STUDY: PURE DATA 50

Appendix A also includes a main wrapper function that launches the interpreter
and converts its output to .WAV format. The resulting audio �le produced by the
execution of the above graph by the interpreter when given a speci�c series of inputs
can be played at https://hisham.hm/thesis/.

4.3 Discussion: Syntax and semantics in visual lan-

guages

The design of end-user programmable applications is a �eld that spans both the
worlds of end-user application design and of programming language design. These
two areas are often distant from each other. The programming language design
community is most often concerned with professionals, and most software written
by end-user application developers nowadays is not programmable. These di�erent
groups naturally tend to be biased towards di�erent aspects of design.

This separation happens to the detriment of end-user programming language
design. Research in visual languages, in particular, is almost by de�nition focused
primarily on syntax, given the area itself is de�ned by a style of representation. But
while the programming language community may be guilty of sometimes dismissing
matters of syntax and perpetuating arguably poor syntax in the name of familiar-
ity [Has96, Tra05], the neglect of semantics in the design of the syntax of end-user
applications has much graver consequences.

As we saw in Section 4.1.4, Pure Data speci�es the right-to-left order in which
outlets are processed, but the order in which messages are �red from various con-
nections of a single outlet depends on the order the connections were made, making
it possible to produce two visually identical graphs with di�erent behavior. This is a
major �aw in the language's syntax, and one that could be easily �xed by exposing
in the syntax the ordered nature of the outgoing connections. Two possible solutions
would be to draw the connector lines next to each other (and not starting from the
same point) making the outlet wider as needed, or to make connection lines visually
distinct (e.g. attaching a number to the lines, or simply painting them with di�erent

Figure 4.3: A Pure Data patch equivalent to the example code in Appendix A

https://hisham.hm/thesis/

CHAPTER 4. CASE STUDY: PURE DATA 51

(a) (b)

Figure 4.4: Impact of semantically signi�cant layout in Max/MSP: Two graphs with
identical sets of nodes and edges producing di�erent results. Image adapted from
[GKHB09].

colors according to their sort order).
In Max/MSP, the commercial variant of Pure Data, it is not possible to produce

two identical graphs with two behaviors, but the solution chosen by its developers
may be even worse. Max/MSP establishes that the order of message propagation
follows that of the visual layout of a patch, that is, the coordinates of nodes on the
canvas [GKHB11]. This means that moving nodes around, without changing their
connections, can alter the behavior of the graph, leading to situations like the one
depicted in Figure 4.4: two graphs with identical sets of nodes and edges producing
di�erent results. It is fair to assume that this counters any intuition a user may
have about the interpretation of a diagram.

If syntax evolves at a slow pace in the world of textual languages, it may well
be because it has reached a �local maximum� in the design space, where current
syntaxes are �good enough�, solutions to typical design requirements are well-known
and it would take a major leap to move into something di�erent. In the world of
visual languages, it seems clear that we have not yet reached this point.

Chapter 5

Case study: spreadsheets

The spreadsheet is arguably the most successful end-user programmable application
[SSM05]. Microsoft Excel is the most successful product of this kind, as part of
Microsoft O�ce, a productivity suite with over 1.2 billion users, with an estimated
750 million users of Excel [Mic14]. The spreadsheet formula language is therefore
the most popular programming language in the world.

The importance of this class of applications as well as concerns with the relia-
bility of spreadsheets produced by users1 have inspired academic work in areas such
as debugging [BGB14], testing [CFR06] and expressivity [JBB03] of spreadsheets.
Often, these works involve modeling the spreadsheet application in order to reason
about it. Formal models of spreadsheets applied to research work usually simplify
considerably their semantics of execution, assuming a model of computation with
no speci�cations for error conditions and without advanced features such as indirect
references [AE06, CSV09].

Real-world spreadsheets, however, are anything but simple. Their design has
evolved over the years, but to this day, spreadsheets follow the design paradigm of
VisiCalc, created in 1979 for the Apple II. The user interface of a spreadsheet is
dominated by a grid view, inspired by physical paper spreadsheets. Each cell of this
grid presents a value, which may be calculated by a formula, which may reference
values calculated by other cells. In the 1980s and 1990s several applications com-
peted for this market, of which VisiCalc failed to maintain dominance. Lotus 1-2-3,
Quattro Pro, Multiplan and Excel all introduced new features, such as instant re-
calculation, formula auto-�ll (where the user can produce new formulas by dragging
the cursor from one cell, producing formulas in new cells following a predictable
pattern), multiple worksheets, and so on. As they adopted each other's features,
the design of spreadsheet applications coalesced to that of Excel today, and by the
2000s the competition among proprietary spreadsheets was essentially over. The
only popular alternatives to Excel that emerged since then did not gain adoption
due to their feature set, but due to non-functional characteristics: LibreO�ce Calc2

became the main free software spreadsheet; Google Sheets is the most popular web-

1Losses caused by spreadsheet errors are calculated in the scale of millions of dollars [SR12].
2Originally StarCalc, a proprietary spreadsheet that was part of StarO�ce, a productivity

suite developed in the 1990s by German company StarDivision. This company was bought by
Sun Microsystems, which open-sourced StarO�ce as OpenO�ce. LibreO�ce emerged as a fork of
OpenO�ce after Oracle's acquisition of Sun.

52

CHAPTER 5. CASE STUDY: SPREADSHEETS 53

based spreadsheet. For both products (and their users), compatibility with Excel
is a major concern. Reproducing the semantics of Excel, therefore, ought to be
considered a major goal for these projects.

For a long time, there was no speci�cation whatsoever of the semantics of Excel,
or even of its �le format. It was only in 2006, 21 years after the initial release of Excel,
that a speci�cation was published detailing its �le format [ISO12], due to political
push towards open formats. Its semantics, however, remain vague. Unsurprisingly,
as we will see below, these major competitors fail to implement full compatibility
with Excel's formula language. Interestingly, as we will see later in this chapter,
even Excel Online3, also produced by Microsoft as a response to Google Sheets, fails
to implement the semantics of the formula language correctly.

5.1 The formula language

We studied the formula language as implemented by �ve spreadsheet applications:

• Microsoft Excel 2010, the spreadsheet market leader, matching the standard-
ized document for the .xlsx format [ISO12], which is still current at the time
of this writing;

• LibreO�ce Calc 5, the leading free software spreadsheet, whose behavior also
matches the latest speci�cation documents for its �le format [OAS11];

• Google Sheets, a prominent web-based spreadsheet4;

• Microsoft Excel Online, Microsoft's own web-based version of Excel5;

• Microsoft Excel for Android version 16.0.7127.1010, Microsoft's mobile version
of Excel6.

All �ve implementations have incompatibilities to various levels, but they are similar
enough so that they can be understood as dialects of the same language. The expo-
sition below presents this formula language as implemented by these spreadsheets,
discussing it from a programming language design perspective. We focus primarily
on Excel, since the other applications mostly follow its design, but we highlight
their variations whenever they appear. In particular, Microsoft Excel for Android
presents very close behavior to that of Excel Online. Whenever mobile Excel is not
explicitly mentioned, the reader can assume that its behavior matches that of Excel
Online.

Given both Google Sheets and Excel Online are server-based applications, their
behavior may change at any time, so all observations about them are current at the
time of writing.

3Available at https://office.live.com/start/Excel.aspx
4https://sheets.google.com
5https://office.live.com/start/Excel.aspx
6https://play.google.com/store/apps/details?id=com.microsoft.office.excel

https://office.live.com/start/Excel.aspx
https://sheets.google.com
https://office.live.com/start/Excel.aspx
https://play.google.com/store/apps/details?id=com.microsoft.office.excel

CHAPTER 5. CASE STUDY: SPREADSHEETS 54

English Portuguese
Numbers 6.2831 6,2831

Function names SQRT(9) RAIZ(9)

Argument separators SUM(6,0.2831) SOMA(6;0,2831)

Literal matrices {1,2;3,4} {1;2\3;4}

Function arguments CELL("type",A1) CÉL("tipo",A1)

Table 5.1: Syntactic changes in localized versions of Excel: all but the last one can
be automatically converted by the application.

Microsoft LO Google Excel
Excel Calc Sheets Online

Refer to a sheet Sheet2!B1 Sheet2.B1 Sheet2!B1 Sheet2!B1

Array formulas {=fn} {=fn} =ARRAYFORMULA(fn) N/A
Nested arrays Error Error Flattened Error

Table 5.2: Some syntactic incompatibilities between spreadsheets

5.1.1 Syntax

Nowadays, all spreadsheet products use roughly the same formula language: the user
of any spreadsheet user will be familiar with expressions such as =A5+SUM(B10:B20).
From a programming point of view, spreadheets have been described as a ��rst-order
functional languages� [AE06]. The formula language is a language of expressions,
with a number of prede�ned operators, such as + (addition), & (string concatenation),
as well as a large number of built-in functions, such as SQRT and SUM. At �rst glance,
it is not unlike the sub-language of expressions with in�x operators and function calls
contained in a number of programming languages.

The syntax of the language changes across translated versions of Excel. The
names of functions are localized: for example, SUM() becomes SOMA() in the Por-
tuguese version. Also, in many languages the comma is used as a decimal separa-
tor for numbers, forcing other uses of commas to be replaced by semicolons, and
semicolons to be replaced by backslashes. Table 5.1 lists those di�erences. The
application stores function names internally in English, so these and other operator
changes are automatically translated when a �le by opened in another version of
Excel. This automatic conversion, unfortunately, is not complete. Some functions
use a set of prede�ned strings as a kind of enumeration, such as CELL("type", A1).
These arguments were translated in localized versions of the functions, and these
break when loaded in a di�erent language: a function written in a Portuguese ver-
sion of Excel as CÉL("tipo", A1) becomes CELL("tipo", A1) when loaded in an
English version of Excel, which produces an error.

Even at a syntactic level, we found that while the studied applications have
similar formula languages, they were all incompatible to each other. The surface
similarity is certainly meant to lower the learning curve for users who are moving
from one application to the other, but beyond the basics, incompatibilities show.
Table 5.2 lists some of these incompatibilities. It is notable that even though only
a mere three features are listed, no two columns in the table are alike.

CHAPTER 5. CASE STUDY: SPREADSHEETS 55

Microsoft LO Google Excel
Excel Calc Sheets Online

=TYPE({1}) 64 64 1 64

=TYPE({1,1}) 64 64 64 64

=TYPE(1+{1,2}) 64 64 1 64

=TYPE({1,2}/0) 64 64 16 64

=TYPE(Z99) (Empty) 1 Err:502 1 1

=TYPE(A1) (Self) 0 (Warning) Err:502 #REF! 0

Table 5.3: Behavior of the TYPE function in spreadsheets

5.1.2 Values and types

The formula language is typed and it features scalar and matrix values. Scalar
values may be of type boolean, error, string or number. Matrices are bidimensional,
with unidimensional arrays as a particular case, and may contain scalar values of
heterogenous types, but matrices cannot contain other matrices. Google Sheets
accepts nested matrix syntax, but matrices are in e�ect �attened: {1,{2,3},4} is
syntactically valid but it is equivalent to {1,2,3,4}. In all other three spreadsheets,
nested matrix literals produce a syntax error.

The matrix notation with curly brackets can be only used to represent literals.
It is not a general matrix constructor, and can only contain scalar literals, and not
subexpressions: while {1,2,3} is valid, both {1+1} and {A1} are not.

Most contexts feature automatic coercions, but not all. The expression ="1"+"2"
returns the number 3, as does =SQRT("9"). But functions taking arrays of numbers,
such as SUM, skip all string values. Therefore, given cells A1 to A3 containing 1,
2 and "100", we have that =A1+A2+A3 returns 103, and =SUM(A1:A3) returns 3.
Oddly, it does coerce boolean values, so, replacing A1 with TRUE in the previous
example still yields the same results for both formulas.

Formula expressions may contain and manipulate scalars and matrices, including
matrix literals, but cells can only represent scalar values. Each cell in the grid may
be either empty or have contents entered by the user. Cell contents may be either
nothing, a formula or a scalar literal value entered (attempting to enter a matrix
literal causes it to be simply interpreted as a string). A cell also has a result value,
based on its contents. Cell values may be either nothing (coerced to either 0 or ""
as necessary) or a scalar value produced from the calculation of the formula. Cells
may also have formatting metadata that are only relevant to the UI presentation
of values, but are not distinct types: for example, percentages and dates are still
values of type number; colors and fonts are also formatting metadata of a cell.

Whenever a scalar value is expected and a matrix value is given, the value at
position (1, 1) of the matrix is returned. The UI of a spreadsheet displays cell val-
ues by default. Some functions, however, operate on cell contents�that is, there
are functions f so that f (10) and f (A1) with A1=10 produce di�erent results. An
example is the function TYPE, which returns the data type of the cell contents as a
number. Given a cell as an argument, TYPE returns 1 if the cell contains a number
literal, 2 for strings and 4 for booleans. If the cell contains a formula, it returns
8 regardless of the data type of the formula's result, unless the formula results in

CHAPTER 5. CASE STUDY: SPREADSHEETS 56

A B

1 =B2 =IF(5<A1;A2;B1)+B2

2 9 10

(a) A simple spreadsheet. A1 evaluates to 10, B1 evaluates to 19

(b) The same spreadsheet represented as a data�ow graph

Figure 5.1: The usual representation of a spreadsheet with a grid layout and a textual
formula language, and its conceptual data�ow graph displaying data dependencies.

an error, in which case it returns 16, or if it contains a matrix literal, in which
case it returns 64 whether the expression results in an error or not. When given an
expression as an argument, TYPE returns the type of the value of the evaluated ex-
pression. This complicated behavior, which is not implemented consistently among
spreadsheets (Table 5.3 shows some incompatibilities), illustrates how poorly data
types are presented to users in spreadsheets.

5.2 Evaluation model

The collection of cells and formulas in a spreadsheet forms a data�ow graph, and
evaluation of each cell follows a top-down evaluation of the abstract syntax tree of
its formula. Figure 5.1(a) depicts the typical visual representation of a spreadsheet
(here, with all formulas exposed for clarity�normally only one formula is visible at a
time, and cells display their computed values). Figure 5.1(b) depicts the same data
as a data�ow graph7. This top-down evaluation corresponds to a typical demand-
driven data�ow model.

The evaluation rules of individual nodes, however, are far from simple. Built-
in functions IF() and CHOOSE() are evaluated lazily (IF(1<2, 10, 0/0) returns
10 and 0/0 is never evaluated), but functions AND() and OR() are not. These two
functions do not perform short-circuiting: OR(TRUE, 10) returns TRUE but OR(TRUE,
0/0) returns #DIV/0!, an error value. To check that the evaluation disciplines of IF
and AND/OR are indeed di�erent, we escaped the purely functional formula language

7A quick remark on syntax: while the representation in Figure 5.1(a) is de�nitely more concise,
5.1(b) makes it a lot more evident that there is a cycle.

CHAPTER 5. CASE STUDY: SPREADSHEETS 57

Microsoft LO Google Excel
Excel Calc Sheets Online

=SUM(SQRT({10,20}))
F 7.6344 3.1622 3.1622 7.6344

AF 7.6344 7.6344 7.6344

=SUM(SQRT(A1:A2))
F #VALUE! #VALUE! #VALUE! #VALUE!

AF 7.6344 7.6344 7.6344

=SUM(SQRT(INDIRECT({"A1","A2"}))
F #VALUE! 3.1622 3.1622 #VALUE!

AF #VALUE! 7.6344 3.1622

=SUM(INDIRECT({"A1","A2"})
F 10 10 10 10

AF 10 30 10

=SUM(MINVERSE(A1:B2)) F 4.163E-17 27756E-17 0 #VALUE!

Table 5.4: Formula evaluation incompatibilities between spreadsheets

by writing a BASIC macro that produces a side-e�ect, popping up a dialog box. In
both Excel and LibreO�ce, the spreadsheets supporting BASIC macros, OR(TRUE,
PopDialogBox()) pops a dialog box but IF(1<2, 10, PopDialogBox()) does not.
Google Sheets supports JavaScript macros, and while its API explicitly blocks IO
side-e�ects such as dialog boxes in formula macros, we were able to reproduce this
test by writing a recursive function that causes a stack over�ow, with similar results.
Excel Online does not support running macros of any kind.

Errors are propagated as the formula is evaluated from left to right. This behav-
ior is relevant to language compatibility since errors can be detected by functions
such as ISNA(), which returns TRUE for #N/A and FALSE for any other error or non-
error values. Given cells A1 containing =1/0 (evaluates to #DIV/0) and A2 containing
#N/A, ISNA(A1+A2) evaluates to FALSE and ISNA(A2+A1) evaluates to TRUE.

5.2.1 Array formulas

An array formula is a formula that is marked to be evaluated in a special array-
oriented evaluation model. In Excel and LibreO�ce a formula is marked as an array
formula by con�rming its entry pressing Ctrl+Shift+Enter, and the UI displays the
formula enclosed in brackets, as in {=A1:B5+10}; Google Sheets uses a function-
style annotation, as in =ARRAYFORMULA(A1:B5+10). In the array formula evaluation
mode, when ranges are given as arguments to scalar operations (such as + in the
above example), the range is decomposed and the operation is performed for each
element. The results of an array formula, therefore, may extend to several cells.
Once the user enters an array formula, the required number of cells is �lled with the
results, with the initial cell being the top-left entry of the result matrix.

For the array formula above, {=A1:B5+10}, the result is a matrix with two
columns and �ve rows, in which each cell is �lled as if the range was substituted by
a scalar corresponding to the given o�set in the range, such that, for each cell (x, y)
of the resulting matrix, its value is equivalent to that of =INDEX(A1:B5, x, y)+10
(where INDEX is the function that takes element in row x, column y of the given
range). This example belies the complexity in the evaluation of array formulas, for
a simple substitution of ranges for their elements is not su�cient. When a function
such as SUM() expects an array argument, the full range is given to the function.

CHAPTER 5. CASE STUDY: SPREADSHEETS 58

This showcases a behavior that is very di�erent from that of most program-
ming languages: evaluation of sub-expressions is context-sensitive. The way a sub-
expression is evaluated may vary according to an enclosing function call, perhaps
several levels up in the syntax tree of the expression. The expected types of ar-
guments for built-in functions de�ne whether expressions given to them will have
scalar or matrix evaluation. Within an array formula, for scalar arguments, arrays
are destructured so that a scalar element is given.

The UI presentation of the array formula also in�uences the resulting values of
cells: an array formula is always entered over a rectangular group of one or more
cells. This group has a user-de�ned size that may or may not match the size of the
matrix value of the array formula. The default size of the cell group matches that
of the matrix value, but the cell group may be resized by the user by dragging the
selection corner. Growing the group beyond the size of the result matrix may result
in cells �lled with #N/A; conversely, shrinking the cell group may hide parts of the
result matrix.

We say it �may� result in #N/A because the precise semantics are a bit more
complicated: if any of the dimensions of the result matrix is 1, increasing the size
of the cell group in this dimension will produce repeated values in that dimension.
For example, if the array formula ={10,20} which produces a single-row matrix is
inserted in a 3 × 2-group A1:B3, then the row will be duplicated, and cells A1:A3
and B1:B3 will present the same contents, namely: 10, 20 and #N/A. If the matrix
representation of an array formula value is 1× 1 (which is also the case if the result
value is not a matrix), all values in its cell group will be identical.

Array formulas are a niche feature: from the Enron corpus of 15935 industrial
spreadsheets used in [AHH15], we independently assessed that 185 of them use
array formulas (1.16%). However, arrays are pervasive in Excel: ranges such as
A1:A5 reference arrays of cells, and common functions such as SUM() take arrays as
arguments. Functions that expect arrays as arguments evaluate these arguments in
an array context, producing di�erent values than arguments evaluated in a scalar
context. In Excel, an array context of evaluation can produce iterated calculation of
scalar functions, like in the context of array formulas. This is not implemented in
LibreO�ce or Google Sheets. In these two applications, iterated execution happens
only in array formulas. Interestingly, Excel Online, which does not support array
formulas, does implement iterated execution in array contexts of plain formulas.
Table 5.4 illustrates these incompatibilities (in the second column of this table, F
denotes plain formula mode, AF denotes array formula mode). In the �rst two
examples, the enclosing SUM function imposes an array context over scalar function
SQRT, triggering its iterated calculation in Excel and Excel Online plain formulas.
In the last two examples, assuming A1 and A2 contain 10 and 20 and B1 and B2
contain 30 and 40, INDIRECT({"A1","A2"}) produces an array {10,20} which is
coerced to scalar 10 in all modes except LibreO�ce's array formula mode; in the
third example, Excel and Excel Online fail to propagate the array context in a
doubly-nested function. In the last row, we see that the spreadsheets also have
inconsistencies in their evaluation order leading to observable di�erences in their
results due to �oating point calculations.

Array formulas are a powerful feature: they implement a separate evaluation

CHAPTER 5. CASE STUDY: SPREADSHEETS 59

model for formulas, and have been used to demonstrate that spreadsheets can model
relational algebra [Tys10]. Still, they are usually disregarded when discussing the
semantics of spreadsheets, and do not feature on any of the works cited in this
chapter. The Excel documentation is vague when explaining their evaluation logic,
resorting to examples [Mic16]. In fact, in the standardization process of spreadsheet
�le formats, the complete speci�cation of formula evaluation was a contention issue:
the draft speci�cation of the OASIS OpenFormula did not specify formula evalu-
ation, which led a Microsoft O�ce team member to raise issues about it [Jon05].
However, Microsoft's own speci�cation did not fully specify formula evaluation at
the time either , and even the following draft of OpenFormula did not specify array
formulas [OAS06]. Eventually, speci�cation of array formulas were included in both
OASIS ODF 1.2 [OAS11] and Microsoft O�ce Open XML [ISO12], but even then
the speci�cation was informal and mostly driven by examples, in both documents.

5.3 An interpreter modeling spreadsheet semantics

In the previous sections we gave a general overview of the spreadsheet language,
taking into account the familiarity most readers probably have with this kind of
application and focusing only on its more peculiar aspects. Now, we proceed with
a more formal and complete presentation. In this section, we present a de�nitional
interpreter designed to model the core semantics of spreadsheets, with a focus on the
data�ow language at its core. Our intention here is to illustrate the various design
decisions that go into specifying precise semantics for a spreadsheet containing a
realistic set of features, showcasing how complexity arises from what is usually seen
as a conceptually simple language. We believe that this helps to explain the number
of incompatibilities between di�erent implementations that we found and described
in our work.

We chose to model most closely the semantics of LibreO�ce, which is the spread-
sheet for which the most detailed speci�cation documents are available.

As in the interpreter for Pure Data, this section was also written in Literate
Haskell, including the complete listings of the intepreter, and its source code in
.lhs format is also available at https://hisham.hm/thesis/.

This implementation uses only standard modules included in the Haskell Plat-
form:

module XlInterpreter where

import Data.Char (ord , chr , toUpper)
import Data.Fixed
import Data.List (foldl ′)
import Data.Map.Strict as Map (Map, foldlWithKey ,member , empty , lookup)
import Data.Set as Set (Set ,member , singleton)
import Data.Map.Strict (insert)
import qualified Data.Set as Set (insert)

https://hisham.hm/thesis/

CHAPTER 5. CASE STUDY: SPREADSHEETS 60

5.3.1 Representation of programs

A spreadsheet program (called a �worksheet�) is represented with the XlWorksheet
data type in our model, which contains a map from row-column coordinates to cells.

In modern spreadsheet applications, a complete document is a set of worksheets
(called a workbook). For simplicity, we did not implement support for multiple
worksheets since this does not a�ect evaluation signi�cantly.

data XlWorksheet = XlWorksheet XlCells
deriving Show

type XlCells = Map.Map L·, ·M XlCell

We represent row-column pairs with the notation L·, ·M. It contains a pair of
addresses, representing row and column, and each of which may be absolute (repre-
sented as 〈n〉) or relative (represented as 〈n〉R).

data L·, ·M = LXlAddr ,XlAddrM
deriving (Eq ,Ord)

data XlAddr = 〈Int〉 -- (absolute address)
| 〈Int〉R -- (relative address)

deriving (Eq ,Ord)

Cells contain formulas. As explained in Section 5.2.1, formulas can be evaluated
in a special mode called �array formula�. The indication if the formula will be
evaluated as an array formula is a property of the cell, not the formula.

In the spreadsheet interface, a single array formula is presented as covering a
range of cells. In our interpreter, we replicate the formula in each cell of the range,
and annotate it with an (x, y) coordinate indicating which element of the range
matrix they represent, with the top-left cell being entry (0, 0). We will call this pair
the o�set of a cell in an array formula.

data XlCell = XlCell XlFormula
| XlAFCell XlFormula (Int , Int)

deriving Show

A formula, in its turn, may be a literal value, a reference to another cell, a
reference to a range of cells, or a function, which has a name and a list of arguments.
Our interpreter, thus, manipulates expressions as trees of XlFun nodes, assuming
that the textual formula language has already been parsed into this format.

data XlFormula = XlLit XlValue
| XlRef L·, ·M
| XlRng L·, ·M L·, ·M
| XlFun String [XlFormula]

deriving Show

Finally, values are numbers, strings, booleans, errors and matrices of literals. We
represent all matrices as 2-dimensional, stored as a list of lists, which each inner list

CHAPTER 5. CASE STUDY: SPREADSHEETS 61

representing a row (a unidimensional array is a 2-dimensional matrix with a single
row). We also have a special value for an empty cell, due to its special coercion rules
(implemented in Section 5.3.5.7).

data XlValue = XlNumber Double
| XlString String
| XlBool Bool
| XlError String
| XlMatrix [[XlValue]]
| XlEmpty

deriving Eq

For convenience we de�ne a few instances of the Show type class that will prove
useful later when running the interpreter. In particular, for display purposes we
convert absolute row-column coordinates to the familiar �A1� notation.8

instance Show L·, ·M where
show (Lr , ·M@〈rn〉 c@〈cn〉) =
"<" ++ [chr (cn + 65)] ++ (show (rn + 1)) ++ ">"

show Lr , cM =
"R" ++ show r ++ "C" ++ show c

instance Show XlValue where
show (XlNumber d) = num2str d
show (XlString s) = show s
show (XlBool b) = show b
show (XlError e) = show e
show (XlMatrix m) = show m
show XlEmpty = ""

instance Show XlAddr where
show 〈n〉 = show n
show 〈n〉R = "[" ++ show n ++ "]"

5.3.2 Representation of states

The state of a spreadsheet consists of the map of cells, which stores the cells and their
contents (that is, the formulas), and the map of values, which stores the computed
value for each cell. Both are indexed by row-column coordinates.

data XlState = XlState XlCells XlValues

type XlValues = Map.Map L·, ·M XlValue

8We made a simpli�cation here by presenting absolute coordinates using strings such as B5.
In spreadsheets, such an identi�er actually represents a relative coordinate, with B5 being the
absolute equivalent. The A1 notation hides the fact that coordinates in spreadsheets are relative by
default (which explains their behavior when copying and pasting cells). Note, however, that this
is a simpli�cation in presentation only; the interpreter itself supports both relative and absolute
addresses.

CHAPTER 5. CASE STUDY: SPREADSHEETS 62

From a programming language perspective, interaction with a spreadsheet con-
sists exclusively of replacing formulas in cells. We represent these as events that
contain the absolute coordinates and the formula to be entered to a cell. In the case
of array formulas, a rectangular range (denoted by the top-left and bottom-right
cells) covering one or more cells must be given. A single formula will then apply to
that range as a group.

data XlEvent = XlSetFormula L·, ·M XlFormula
| XlSetArrayFormula L·, ·M L·, ·M XlFormula

deriving Show

5.3.3 Execution

The execution of a spreadsheet is demand-driven. The user triggers the evaluation
by editing a cell, which causes its value to be recomputed. When computing the
value of a cell, other cells may be referenced, so they are computed as well, and the
process continues recursively. Conversely, other cells may reference the newly-edited
cell, so their values need to be recomputed as well.

5.3.3.1 Main loop

Since we are interested in the dynamic semantics (that is, what happens with the
program state over time as it runs), we model our interpreter as a loop of evaluation
steps. The function runEvents implements this loop, taking as inputs a worksheet
(a spreadsheet document containing the initial contents of cell formulas) and a list
of events. For each event, it calls the main evaluation function, runEvent , until it
produces the �nal state, containing the resulting cells and their values.

Unlike the interpreter modelling Pure Data in Chapter 4, we return only the
�nal state, since inspecting the �nal result of the spreadsheet is usually su�cient for
understanding its behavior (and cell evaluation has loop detection, so a �nal state is
guaranteed to be obtained). Tracing the intermediate results is an easy modi�cation
if desired.

runEvents :: XlWorksheet → [XlEvent]→ XlState
runEvents sheet@(XlWorksheet cells) events =

foldl ′ runEvent (XlState cells Map.empty) events

When we process an event in runEvent , we need to update the cells that were
entered and then perform the necessary recalculations. Since we are not concerned
with performance and formulas are in principle purely functional (which is not true in
real-world spreadsheets due to functions such as TODAY which reads the system clock,
but is true in our interpreter), we simply discard the previous map of values and
recompute all cells in the worksheet. One way to avoid this computational expense
would be to maintain data structures that keep track of reverse dependencies for
each cell, but we avoid this optimization here for simplicity. Real-world spreadsheets

CHAPTER 5. CASE STUDY: SPREADSHEETS 63

further restrict the recalculation by limiting it to cells which are currently visible in
their user interface.9

Our interpreter does avoid recalculating a cell if it was already calculated in the
current pass as a dependency of a previous cell. Also, it keeps track of which cells
are currently being visited, for detecting circular references.

runEvent :: XlState → XlEvent → XlState
runEvent env@(XlState cells) event =

let
cells ′ = updateCells cells event

acc :: XlValues → L·, ·M→ XlCell → XlValues
acc vs rc cell =

if Map.member rc vs
then vs
else

let (v ′, vs ′) = calcCell (Set .singleton rc) cells ′ vs rc cell
in insert rc v ′ vs ′

in
XlState cells ′ (Map.foldlWithKey acc Map.empty cells ′)

An event may update a single cell in case of a regular formula, or many cells at a
time in case of an array formula applied over a range. Function updateCells covers
both cases:

updateCells cells event@(XlSetFormula rc fml) =
insert rc (XlCell fml) cells

updateCells cells event@(XlSetArrayFormula rcfrom rcto fml) =
fst $ foldRange rcfrom rcfrom rcto (cells , (0, 0)) id opcell oprow

where
opcell (cells , (x , y)) rc = (insert rc (XlAFCell fml (x , y)) cells , (x + 1, y))
oprow r (cells , (x , y)) = (cells , (0, y + 1))

To iterate over ranges, we de�ne a folding function foldRange, which loops over
the 2-dimensional range applying two accumulator functions: one which runs on
each cell, and one that runs as each row is completed.

foldRange :: L·, ·M→ L·, ·M→ L·, ·M -- cell position and addresses for the range
→ r -- a zero-value for the fold as a whole
→ (r → c) -- an initializer function for each row
→ (c → L·, ·M→ c) -- function to run on each cell
→ (r → Int → c → r) -- function to run on each complete row
→ r

foldRange pos rcfrom rcto zero zerorow opcell oprow =
let

(rmin, cmin, rmax, cmax) = toAbsRange pos rcfrom rcto

9We were able to empirically verify this when we produced a spreadsheet with a formula that
crashed LibreO�ce. The application only crashed when the o�ending cell was scrolled into view.

CHAPTER 5. CASE STUDY: SPREADSHEETS 64

handleRow accrow r = oprow accrow r vrow

where
handleCell acccell c = opcell acccell L〈r〉, 〈c〉M
vrow = foldl ′ handleCell (zerorow accrow) [cmin . . cmax]

in
foldl ′ handleRow zero [rmin . . rmax]

It is important to note that, when handling array formulas, updateCells expands
a single array formula spanning a range of cells into a number of individual XlAFCell
entries in the cells map, each of them containing the (x, y) o�set to indicate their
relative position in the rectangular range to which the array formula was applied.

This makes two important assumptions. First, that it is possible to compute
each position of an array formula individually. This assumption is not critical. At
worst, it would wasteful in cases such as matrix multiplication, where each cell
would cause the whole matrix to be calculated and then converted down to the
scalar corresponding to the cell's position.

The second assumption is that the computation of a given cell from an array
formula's range is independent of the total size of the range as speci�ed by the
user when the array formula was created. In general, this assumption holds in
spreadsheet applications, but we were able to identify corner cases in Excel where
an array formula returns di�erent results when entered in a single cell versus being
entered in a range. For example, assuming A1 contains the string C1, B1 contains
the string D1, C1 contains 9 and D1 contains 16, entering =SQRT(INDIRECT(A1:B1))
in cell E2 results in the value 3; but entering the same formula with the range E2:F2
selected causes the value of both cells to be #VALUE!. In LibreO�ce (and in our
interpreter), they evaluate to 3 and 4. By behaving di�erently according to the
range size selected during initial entry, Excel adds a dependency to the calculation
of cells that is invisible in its UI. This interpreter avoids this problem by using
calculation strategies similar to those in LibreO�ce and Google Sheets.

5.3.3.2 Resolving addresses

Relative coordinates are used extensively in spreadsheets, but whenever they are
used they need to be resolved into absolute addresses. Also, whenever the interpreter
uses ranges, it needs to ensure that they are normalized as absolute coordinates with
the top-left cell �rst and the bottom-right cell second.

When relative addresses are given, they are resolved relative to the coordinate
of the cell being evaluated, which we will refer throughout as the cell's position.

Functions toAbs and toAbsRange normalize coordinates and ranges, respectively:

toAbs :: L·, ·M→ L·, ·M→ L·, ·M
toAbs pos@Lrp, cpM cell@Lr , cM = L(absAddr rp r), (absAddr cp c)M

where
absAddr :: XlAddr → XlAddr → XlAddr
absAddr c@〈 〉 = c
absAddr 〈b〉 〈c〉R = 〈(b + c)〉
absAddr b@〈 〉R = ⊥

CHAPTER 5. CASE STUDY: SPREADSHEETS 65

toAbsRange :: L·, ·M→ L·, ·M→ L·, ·M→ (Int , Int , Int , Int)
toAbsRange pos rcfrom rcto =

let
L〈rmin〉, 〈cmin〉M = toAbs pos rcfrom

L〈rmax〉, 〈cmax〉M = toAbs pos rcto

rmin = min rmin rmax

rmax = max rmin rmax

cmin = min cmin cmax

cmax = max cmin cmax

in
(rmin, cmin, rmax, cmax)

5.3.4 Calculating cell values

To determine the value of a cell, the interpreter evaluates the cell's formula, po-
tentially recursing to evaluate other cells referenced by that formula. The calcCell
function takes as arguments a set of cell addresses currently being recursively vis-
ited (to detect cycles), the table of cell formulas, the current table of values, the
cell position and the actual cell to compute. The function produces the calculated
value of the cell along with the map of all values, since other calls may have been
computed along the way.

calcCell :: Set L·, ·M→ XlCells → XlValues → L·, ·M→ XlCell
→ (XlValue,XlValues)

A major complication in the semantics of a spreadsheet application is the fact
that there are two distinct modes of evaluation: one for regular formulas, and one
for array formulas. Further, di�erent kinds of functions in formulas evaluate their
arguments in di�erent ways: borrowing from the terminology of the language Perl,
some functions evaluate their arguments in a scalar context (that is, they expect
their arguments to produce a scalar value), and some evaluate arguments in an
array context. This gives us four evaluation rules in total.

This is the core of the incompatibility between spreadsheet formula languages.
As our examples in Section 5.2.1 demonstrate, each application uses a di�erent set of
rules as to when to switch to array evaluation, and to what to do in each evaluation
mode.

Note that the presence of di�erent evaluation rules a�ects not only array for-
mulas. As illustrated in Figure 5.4, Excel performs array-style evaluation in sub-
formulas for certain functions even when not in array formula mode.

In our implementation, we modularized these decisions into a number of functions
implementing di�erent ways of evaluating a formula, in array and scalar contexts.

Then, to represent an evaluation mode, the interpreter features a data type
XlEvaluator which, besides carrying a few context values for convenience, includes
a coercion function eToScalar to obtain a scalar function according to the context
of a cell (as we will see in more detail below), and two evaluation functions, one for
each of the possible evaluation contexts: eArray and eScalar .

CHAPTER 5. CASE STUDY: SPREADSHEETS 66

data XlEvaluator = XlEvaluator {
ePos :: L·, ·M,
eOffset :: (Int , Int),
eVisiting :: Set L·, ·M,
eCells :: XlCells ,
eToScalar :: L·, ·M→ (Int , Int)→ XlFormula → XlFormula,
eArray :: XlEvaluator → XlValues → XlFormula → (XlValue,XlValues),
eScalar :: XlEvaluator → XlValues → XlFormula → (XlValue,XlValues)
}

We opted to implement evaluation functions that follow the OpenDocument
speci�cation. With this, we achieved a good (but deliberately not full) degree of
compatibility with LibreO�ce in the subset of spreadsheet features implemented in
this interpreter.

For calculating the value of a regular cell, the interpreter employs an evaluator
that uses functions intersectScalar to convert non-scalar to scalars, evalScalarFormula
for evaluating scalar arguments, and evalFormula for evaluating non-scalar argu-
ments. We will see the de�nition of these functions in Section 5.3.4.1. Once the
evaluator is de�ned, calcCell triggers the scalar evaluation function on the formula.

calcCell visiting cells vs pos@L〈r〉, 〈c〉M (XlCell formula) =
evalScalarFormula ev vs formula
where

ev = XlEvaluator {
ePos = pos ,
eOffset = (0, 0),
eCells = cells ,
eVisiting = visiting ,
eToScalar = intersectScalar ,
eScalar = evalScalarFormula,
eArray = evalFormula
}

For calculating cells marked as array formulas, the interpreter uses a di�er-
ent evaluator. For coercing non-scalars into scalars, it uses a di�erent function,
matrixToScalar . For scalar evaluation of arguments, it uses the same function
evalScalarFunction as above, but for non-scalar evaluation, it uses iterateFormula.
Both matrixToScalar and iterateFormula will be de�ned in Section 5.3.4.2.

The implementation of calcCell for array formulas also triggers the calculation
by applying this mode's scalar evaluator, but here the result value is further �ltered
through a coercion function (scalarize), to ensure that a scalar value is ultimately
displayed in the cell.

calcCell visiting cells vs pos (XlAFCell formula (x , y)) =
scalarize ev $ (eScalar ev) ev vs formula
where

ev = XlEvaluator {
ePos = pos ,

CHAPTER 5. CASE STUDY: SPREADSHEETS 67

eOffset = (x , y),
eCells = cells ,
eVisiting = visiting ,
eToScalar = matrixToScalar ,
eScalar = evalScalarFormula,
eArray = iterateFormula
}

scalarize :: XlEvaluator → (XlValue,XlValues)→ (XlValue,XlValues)
scalarize ev (v , vs) = (v ′, vs)

where
(XlLit v ′) = matrixToScalar (ePos ev) (eOffset ev) (XlLit v)

5.3.4.1 Regular cell evaluation

When the interpreter evaluates a formula in a scalar context, it runs the evaluator's
scalar conversion function on the formula prior to evaluating it proper. If the formula
is an array or a range, it will be converted to a scalar. If it is a scalar or a function,
it will be evaluated as-is.

evalScalarFormula ev vs formula =
evalFormula ev vs formula ′

where
formula ′ = (eToScalar ev) (ePos ev) (eOffset ev) formula

The conversion function for regular cells, intersectScalar , is de�ned as follows.
For array literals, element (0, 0) is returned. Empty arrays have inconsistent be-

havior across spreadsheets. When given an empty array, Excel rejects the formula,
pops a message box alerting the user and does not accept the entry. Excel Online
does not display a message, but marks the cell with a red dashed border. Libre-
O�ce exhibits a very inconsistent behavior: ={} displays as an empty cell; =10/{}
evaluates to #VALUE! but both =ABS({}) and =ABS(10/{}) evaluate to 0; however,
=ABS(A1) where A1 is {} evaluates to #VALUE!. In our interpreter, we simply return
the #REF! error for all uses of {}, replicating the behavior of Google Sheets.

For ranges, the resulting value depends on the shape of the range and the position
in the spreadsheet grid where the formula was entered. If the range is a vertical
(n× 1) or horizontal (1× n) array, the evaluation follows an �intersection� rule: the
value returned is that of the element of the range that is perpendicularly aligned
with the position of the formula. For example, for a formula in cell G5 that references
A1 in a scalar context, the value in A5 will be returned. Likewise, if that same cell G5
references E1:K1, the value obtained will be that in cell G1. If there is no intersection
or if the range has any other shape, #VALUE! is returned.

intersectScalar :: L·, ·M→ (Int , Int)→ XlFormula → XlFormula
intersectScalar pos@L〈r〉, 〈c〉M formula =

case formula of
XlLit (XlMatrix []) → XlLit (XlError "#REF!")
XlLit (XlMatrix [[]])→ XlLit (XlError "#REF!")

CHAPTER 5. CASE STUDY: SPREADSHEETS 68

XlLit (XlMatrix m) → XlLit (head (head m))
XlRng rcfrom rcto →

case toAbsRange pos rcfrom rcto of
(rmin, cmin, rmax, cmax)
| (cmin ≡ cmax) ∧ (r > rmin) ∧ (r 6 rmax)→ XlRef L〈r〉, 〈cmin〉M
| (rmin ≡ rmax) ∧ (c > cmin) ∧ (c 6 cmax) → XlRef L〈rmin〉, 〈c〉M
→ XlLit (XlError "#VALUE!")

f → f

5.3.4.2 Cell evaluation for array formulas

When a cell is marked as an array formula, it follows a di�erent evaluation process.
As we saw in the de�nition of the array formula evaluator in function calcCell
(Section 5.3.4), for scalar contexts we use the same evaluation function as in regular
cells, evalScalarFormula. However, in array formulas this function uses a di�erent
conversion function: eToScalar is de�ned as matrixToScalar .

Function matrixToScalar extracts a scalar value from a non-scalar based on the
o�set (x, y) relative to the range for which the array formula was de�ned. This
way, as runEvent calculates cell values for each position of an array formula, the
evaluation of each cell will extract a di�erent value from non-scalars produced during
the calculation of the formula. For example, if we enter =A1:B2 as an array formula
in range D10:E11, cell D11 has o�set (1, 0) and will obtain the value of cell B1.

The area designated by the user for an array formula does not necessarily have the
same dimensions as the non-scalar being displayed in it. The OpenDocument speci�-
cation lists a series of rules for �lling the exceeding cells, which the displayRule func-
tion below implements. Excel and LibreO�ce also implement these rules; Google
Sheets does not.

matrixToScalar :: L·, ·M→ (Int , Int)→ XlFormula → XlFormula
matrixToScalar pos (x , y) f =

case f of
XlLit (XlMatrix m)→

displayRule x y (foldl ′ max 0 (map length m)) (length m)
(λx y → XlLit $ m !! y !! x)

XlRng rcfrom rcto →
displayRule x y (1 + cmax − cmin) (1 + rmax − rmin)

(λx y → XlRef L〈(rmin + y)〉, 〈(cmin + x)〉M)
where

(rmin, cmin, rmax, cmax) = toAbsRange pos rcfrom rcto

f → f
where

displayRule :: Int → Int → Int → Int → (Int → Int → XlFormula)
→ XlFormula

displayRule x y xsize ysize getXY
| xsize > x ∧ ysize > y = getXY x y
| xsize ≡ 1 ∧ ysize ≡ 1 = getXY 0 0

CHAPTER 5. CASE STUDY: SPREADSHEETS 69

| xsize ≡ 1 ∧ x > 0 = getXY 0 y
| ysize ≡ 1 ∧ y > 0 = getXY x 0
| otherwise = XlLit $ XlError "#N/A"

Function iterateFormula implements the special evaluation mode for array for-
mulas. When given a function where any argument is a range or a matrix, it produces
a matrix with results. It does this by �rst checking each argument and determining
the maximum dimensions used by an argument (xmax and ymax). Then, it iterates
from (0, 0) to (xmax, ymax), evaluating the function in scalar context once for each
entry. In each evaluation, it uses a modi�ed version of the list of arguments, in
which each non-scalar argument is converted to a scalar based on the current (x, y)
o�set.

If the given function has no non-scalar arguments, it is evaluated normally by
evalFormula.

iterateFormula :: XlEvaluator → XlValues → XlFormula → (XlValue,XlValues)
iterateFormula ev vs (XlFun name args) =

if xmax > 1 ∨ ymax > 1
then (λ(m, vs ′)→ (XlMatrix m, vs ′)) $ foldl ′ doRow ([], vs) [0 . . ymax − 1]
else evalFormula ev vs (XlFun name args)
where

ymax = foldl ′ getY 1 args
where

getY a (XlLit (XlMatrix m)) = max a (length m)
getY a (XlRng rcfrom rcto) = max a (1 + rmax − rmin)

where
(rmin, , rmax,) = toAbsRange (ePos ev) rcfrom rcto

getY a = a
xmax = foldl ′ getX 1 args

where
getX a (XlLit (XlMatrix m)) = max a (maxRowLength m)

where
maxRowLength :: [[XlValue]]→ Int
maxRowLength m = foldl ′ (λa ′ row → max a ′ (length row)) 1 m

getX a (XlRng rcfrom rcto) = max a (1 + cmax − cmin)
where

(, cmin, , cmax) = toAbsRange (ePos ev) rcfrom rcto

getX a = a
doRow :: ([[XlValue]],XlValues)→ Int → ([[XlValue]],XlValues)
doRow (m, vs) y = appendTo m $ foldl ′ doCell ([], vs) [0 . . xmax − 1]

where
doCell :: ([XlValue],XlValues)→ Int → ([XlValue],XlValues)
doCell (row , vs) x = appendTo row $ evalFormula ev vs f ′

where
f ′ = XlFun name (map ((eToScalar ev) (ePos ev) (x , y)) args)

appendTo xs (v , vs) = (xs ++ [v], vs)

iterateFormula ev vs f = evalFormula ev vs f

CHAPTER 5. CASE STUDY: SPREADSHEETS 70

5.3.5 Operations

The last part of the interpreter is function evalFormula, which implements the eval-
uation of the various operations available in the textual formula language. Given
an evaluator, the current map of values, and a formula, it produces the calculated
value of the formula and a new map of values (since other cells may be calculated
as part of the evaluation of this formula).

evalFormula :: XlEvaluator → XlValues → XlFormula → (XlValue,XlValues)

The function evalFormula implements the various language constructs as follows.

5.3.5.1 Literals, references and ranges

When a formula is just a literal, its value is returned and the map of cell values
remains unchanged.

evalFormula ev vs (XlLit v) = (v , vs)

When a formula is a reference to another cell, evalFormula �rst converts the
reference address to its absolute value relative to the cell's position. Then, it detects
circular references by checking the eVisiting set of the evaluator. If the reference is
valid, it checks in the map of values if the value was already calculated. If the cell
is unset, we return the special value XlEmpty . Finally, if the cell contains a formula
which needs to be calculated, we calculate it with calcCell and store the resulting
value in an updated map of values.

evalFormula ev vs (XlRef ref ′) =
let

ref = toAbs (ePos ev) ref ′

visiting = eVisiting ev
cells = eCells ev

in
if ref ∈ visiting
then (XlError "#LOOP!", vs)
else

case Map.lookup ref vs of
Just v → (v , vs)
Nothing →

case Map.lookup ref cells of
Nothing → (XlEmpty , vs)
Just cell →

(v ′, vs ′′)
where

(v ′, vs ′) = calcCell (Set .insert ref visiting) cells vs ref cell
vs ′′ = insert ref v ′ vs ′

For evaluating ranges, evalFormula uses foldRange to iterate over the range, in-
voking the scalar evaluation function (eScalar) for each element, producing a matrix
of values.

CHAPTER 5. CASE STUDY: SPREADSHEETS 71

evalFormula ev vs (XlRng from to) =
let

(m, vs ′) = foldRange (ePos ev) from to ([], vs) zerorow opcell oprow

where
zerorow :: ([[XlValue]],XlValues)→ ([XlValue],XlValues)
zerorow (, vs) = ([], vs)

opcell :: ([XlValue],XlValues)→ L·, ·M→ ([XlValue],XlValues)
opcell (row , vs) rc =

addToRow $ (eScalar ev) ev vs (XlRef rc)
where addToRow (v , vs ′) = (row ++ [v], vs ′)

oprow :: ([[XlValue]],XlValues)→ Int → ([XlValue],XlValues)
→ ([[XlValue]],XlValues)

oprow (m,) r (row , vs) = (m ++ [row], vs)
in

(XlMatrix m, vs ′)

5.3.5.2 IF, AND, and OR

The IF function takes three arguments. It tests the �rst argument, and if evaluates to
XlBool True it evaluates the second argument and returns it; otherwise, it evaluates
and returns the third argument. Note that arguments are evaluated lazily, as is
typical in constructs of this type in programming languages.

evalFormula ev vs (XlFun "IF" [i , t , e]) =
let

(vi, vsi) = toBool $ (eScalar ev) ev vs i
(vr, vsr) =

case vi of
(XlError) → (vi, vsi)
(XlBool True) → (eScalar ev) ev vsi e
(XlBool False)→ (eScalar ev) ev vsi t

→ ((XlError "#VALUE!"), vsi)
in

(vr, vsr)

The AND and OR functions in spreadsheets, however, are evaluated strictly, not
performing the usual short-circuit expected of them in programming languages.
They always evaluate both arguments, and return and error if either argument fails.

evalFormula ev vs (XlFun "AND" [a, b]) =
let

(va, vs
′) = toBool $ (eScalar ev) ev vs a

(vb, vs
′′) = toBool $ (eScalar ev) ev vs ′ b

vr = case (va, vb) of
(XlError ,) → va

(,XlError) → vb

CHAPTER 5. CASE STUDY: SPREADSHEETS 72

(XlBool True,XlBool True)→ va

→ XlBool False
in

(vr, vs
′′)

evalFormula ev vs (XlFun "OR" [a, b]) =
let

(va, vs
′) = toBool $ (eScalar ev) ev vs a

(vb, vs
′′) = toBool $ (eScalar ev) ev vs ′ b

vr = case (va, vb) of
(XlError ,) → va

(,XlError) → vb

(XlBool True,)→ va

(,XlBool True)→ vb

→ XlBool False
in

(vr, vs
′′)

5.3.5.3 SUM

The SUM function illustrates the use of array evaluation. Each argument is evaluated
using the eArray function of the evaluator ev , and their results are added producing
the �nal result vr. Thus, when used in an array formula, the evaluation of its
arguments is done using iterateFormula (Section 5.3.4.2), producing a XlMatrix of
results that is then iterated to perform the sum. This allows, for example, to use
=SUM(SQRT(A1:A10)) to obtain a sum of squares, even though function SQRT is a
scalar function that does not support ranges on its own.

It is worth noting that the coercion rules used by SUM are di�erent from those
used by + (Section 5.3.5.6). While SUM skips string values (which may appear, for
example, as part of a range), the + function attempts to coerce them into numbers.

evalFormula ev vs (XlFun "SUM" args) =
let

doSum s@(XlString) v = v
doSum v s@(XlString) = v
doSum (XlBool b) (XlNumber n) = XlNumber (bool2num b + n)
doSum (XlNumber n) (XlBool b) = XlNumber (bool2num b + n)
doSum (XlNumber a) (XlNumber b) = XlNumber (a + b)

(vr, vsr) = foldl ′ handle (XlNumber 0, vs) args
where

handle (acc, vsacc) arg =
let

(va, vsb) = (eArray ev) ev vsacc arg
vsum =

case va of
XlError → va

XlMatrix m → foldl ′ (foldl ′ (checkErr doSum)) acc m

CHAPTER 5. CASE STUDY: SPREADSHEETS 73

XlBool b → checkErr doSum acc va

XlNumber n → checkErr doSum acc va

→ XlError "#VALUE!"
in

(vsum, vsb)
in

(vr, vsr)

5.3.5.4 INDIRECT

The INDIRECT function converts a string describing a reference or range written
in �A1� notation to the actual reference or range. This feature adds support for
runtime-evaluated indirect connections to the data�ow graph of a spreadsheet. A
cell can e�ectively act as a pointer to another cell.

Di�erent spreadsheets vary in their semantics when supporting non-scalar indi-
rect references. Here, we opted for implementing it in a straightforward way: we
evaluate the argument in a scalar context, coercing it to string, and then evaluate
the indirect reference in a scalar context as well. When used in an array formula,
INDIRECT can handle non-scalar arguments due to the scalar conversion performed
by matrixToScalar (Section 5.3.4.2).

Auxiliary function toRC converts addresses in �A1� alphanumeric format to the
internal row-column numeric format. For simplicity, this interpreter only support
columns A to Z, and we assume the string is well-formed and do not perform error
checking.

evalFormula ev vs (XlFun "INDIRECT" [addr]) =
let

toRC :: String → L·, ·M
toRC (l : num) = L〈((read num)− 1)〉, 〈((ord l)− 65)〉M
convert s =

case break (≡ ':') s of
(a1 , ':' : b2)→ (XlRng (toRC a1) (toRC b2))

→ (XlRef (toRC s))

(va, vsb) = toString $ (eScalar ev) ev vs addr
(vr, vsr) =

case va of
XlError e → (va, vsb)
XlString s → (eScalar ev) ev vsb (convert s)

→ ((XlError "#VALUE!"), vsb)
in

(vr, vsr)

5.3.5.5 String operations

For illustrative purposes, we de�ne a function that operates on strings: the substring
function MID, and the concatenation operator &. These are useful for demonstrating

CHAPTER 5. CASE STUDY: SPREADSHEETS 74

the coercion rules in examples. In particular, it is interesting to observe how the
empty cell coerces to di�erent values: with A1 being empty, ="Hello"&A1 results in
"Hello", and =1/A1 results in #DIV/0!.

evalFormula ev vs (XlFun "MID" [vstr, vsum, vlen]) =
let

(v′
str, vs ′) = toString $ (eScalar ev) ev vs vstr

(v′
sum, vs ′′) = toNumber $ (eScalar ev) ev vs ′ vsum

(v′
len, vs ′′′) = toNumber $ (eScalar ev) ev vs ′′ vlen

doMid (XlString str) (XlNumber start) (XlNumber len) =
XlString $ take (floor len) $ drop (floor start − 1) str

doMid = XlError "#VALUE!"

v = doMid v′
str v′

sum v′
len

in
(v , vs ′′′)

evalFormula ev vs (XlFun "&" [a, b]) =
let

(va, vs
′) = toString $ (eScalar ev) ev vs a

(vb, vs
′′) = toString $ (eScalar ev) ev vs ′ b

doConcat (XlString sa) (XlString sb) = XlString (sa ++ sb)
doConcat = XlError "#VALUE!"

v = checkErr doConcat va vb

in
(v , vs ′′)

5.3.5.6 Mathematical operations and equality

A few unary and binary mathematical operations are de�ned here. They all follow
the same pattern, encapsulated as functions unOp and binOp de�ned further below.
The division operator additionally checks for division-by-zero, returning #DIV/0!.

evalFormula ev vs (XlFun "SQRT" [v]) = unOp sqrt ev vs v
evalFormula ev vs (XlFun "ABS" [v]) = unOp abs ev vs v
evalFormula ev vs (XlFun "+" [a, b]) = binOp (+) ev vs a b
evalFormula ev vs (XlFun "-" [a, b]) = binOp (−) ev vs a b
evalFormula ev vs (XlFun "*" [a, b]) = binOp (∗) ev vs a b

evalFormula ev vs (XlFun "/" [a, b]) =
let

(va, vs
′) = toNumber $ (eScalar ev) ev vs a

(vb, vs
′′) = toNumber $ (eScalar ev) ev vs ′ b

doDiv (XlNumber na) (XlNumber 0) = XlError "#DIV/0!"
doDiv (XlNumber na) (XlNumber nb) = XlNumber (na / nb)
doDiv = XlError "#VALUE!"

CHAPTER 5. CASE STUDY: SPREADSHEETS 75

v = checkErr doDiv va vb

in
(v , vs ′′)

The equality operator is notable in which is does not perform number and string
coercions as the other functions (that is, =2="2" returns FALSE). However, it does
coerce booleans to numbers, probably as a compatibility leftover from when spread-
sheets did not have a separate boolean type. The OpenDocument speci�cation
[OAS11] states that a conforming implementation may represent booleans as a sub-
type of numbers.

evalFormula ev vs (XlFun "=" [a, b]) =
let

(va, vs ′) = (eScalar ev) ev vs a
(vb, vs ′′) = (eScalar ev) ev vs ′ b

doEq (XlNumber na) (XlNumber nb) = XlBool (na ≡ nb)
doEq (XlString sa) (XlString sb) = XlBool (sa ≡ sb)
doEq (XlBool ba) (XlBool bb) = XlBool (ba ≡ bb)
doEq (XlNumber na) (XlBool bb) = XlBool (na ≡ bool2num bb)
doEq (XlBool ba) (XlNumber nb) = XlBool (bool2num ba ≡ nb)
doEq = XlBool False

v = checkErr doEq va vb

in
(v , vs ′′)

evalFormula ev vs (XlFun) = (XlError "#NAME?", vs)

Functions unOp and binOp are convenience functions that encapsulate the pat-
tern for common unary and binary numeric functions. They evaluate their argu-
ments in a scalar context, check if any of the arguments evaluated to an error, and
perform the operation op.

unOp :: (Double → Double)
→ XlEvaluator → XlValues → XlFormula → (XlValue,XlValues)

unOp op ev vs v =
let

(v ′, vs ′) = toNumber $ (eScalar ev) ev vs v
v ′′ = case v ′ of

e@(XlError)→ e
(XlNumber n) → XlNumber $ op n

→ XlError "#VALUE!"
in

(v ′′, vs ′)

binOp :: (Double → Double → Double)→ XlEvaluator → XlValues
→ XlFormula → XlFormula → (XlValue,XlValues)

binOp op ev vs a b =
let

(va, vs
′) = toNumber $ (eScalar ev) ev vs a

CHAPTER 5. CASE STUDY: SPREADSHEETS 76

(vb, vs
′′) = toNumber $ (eScalar ev) ev vs ′ b

doOp (XlNumber na) (XlNumber nb) = XlNumber (op na nb)
doOp = XlError "#VALUE!"

v = checkErr doOp va vb

in
(v , vs ′′)

5.3.5.7 Type conversions

We conclude the presentation of the interpreter with the remaining utility functions
that perform various type conversions and checks.

Function num2str is a converter that presents rational and integer values in
their preferred notation (that is, with and without a decimal point, respectively).
Function bool2num converts booleans to 0 or 1.

num2str :: Double → String
num2str n = if fromIntegral (floor n) 6≡ n then show n else show (floor n)

bool2num :: Bool → Double
bool2num b = if b ≡ True then 1 else 0

Functions toNumber , toString and toBool attempt to convert a value to the
speci�ed type, producing a XlError value if the input is not convertible.

toNumber :: (XlValue,XlValues)→ (XlValue,XlValues)
toNumber (v , vs) = (coerce v , vs)

where
coerce (XlString s) = case reads s :: [(Double, String)] of

[] → XlError "#VALUE!"
[(n,)]→ XlNumber n

coerce (XlBool b) = XlNumber (bool2num b)
coerce (XlEmpty) = XlNumber 0
coerce (XlMatrix) = XlError "#VALUE!"
coerce v = v

toString :: (XlValue,XlValues)→ (XlValue,XlValues)
toString (v , vs) = (coerce v , vs)

where
coerce (XlNumber n) = XlString (num2str n)
coerce (XlBool b) = XlString (if b ≡ True then "1" else "0")
coerce (XlEmpty) = XlString ""
coerce (XlMatrix) = XlError "#VALUE!"
coerce v = v

toBool :: (XlValue,XlValues)→ (XlValue,XlValues)
toBool (v , vs) = (coerce v , vs)

where
coerce (XlNumber 0) = XlBool False
coerce (XlNumber) = XlBool True

CHAPTER 5. CASE STUDY: SPREADSHEETS 77

coerce (XlString s) = case map toUpper s of
"TRUE"→ XlBool True
"FALSE"→ XlBool False

→ XlError "#VALUE!"
coerce (XlEmpty) = XlBool False
coerce (XlMatrix) = XlError "#VALUE!"
coerce v = v

Function checkErr checks input values for errors before performing a binary
operation. The order errors are evaluated is relevant: if the �rst argument contains
an error, it takes precedence.

checkErr :: (XlValue → XlValue → XlValue)→ XlValue → XlValue → XlValue
checkErr op e@(XlError) = e
checkErr op e@(XlError) = e
checkErr op a b = op a b

5.3.6 Demonstration

In Appendix B we present a demonstration of use of this interpreter, showcasing
its features. We also produced a series of tests that correspond to sections of the
OpenDocument speci�cation for the .ods format [OAS11] and the ISO Open O�ce
XML speci�cation for the .xlsx format [ISO12], as well as our own additional
tests that cover some unspeci�ed behavior. All examples and tests are available in
https://hisham.hm/thesis/.

5.4 Discussion: Language speci�cation and compat-

ibility issues

One might argue that the various language issues present in formula languages
discussed in this chapter are due to speci�cation blunders early in the history of
spreadsheets, forever preserved in the name of backwards compatibility. But the
insu�cient concern with precise semantics of spreadsheets is not only historical,
as it manifests itself in compatibility issues between modern variants, even by the
same vendor. Further, when evaluating the compatibility of various spreadsheet
implementations it is necessary to de�ne what exactly is meant by compatibility.

When looking at spreadsheets as documents, one tends to think about ��le for-
mat compatibility� as such: an application should be able to load a �le and render it
correctly. This de�nition of compatibility is insu�cient, as it does not account the
dynamic semantics of the language, that is, how the state of the program changes
over time as the program executes. When one looks at a spreadsheet as an interac-
tive program, then the newly-loaded document de�nes only the initial state of the
program and further edits to cells are inputs that cause state updates.

Compatible languages should have equivalent dynamic semantics. Under this
de�nition, Excel, Excel Online and mobile Excel, all three by Microsoft, are not

https://hisham.hm/thesis/

CHAPTER 5. CASE STUDY: SPREADSHEETS 78

Microsoft LO Google Excel Excel
Excel Calc Sheets Online mobile

A1 Err:522 #REF! 100 100

B1 Err:522 #REF! 0 0

error dialog no no no yes

Table 5.5: Behavior upon circular references, after the following sequence: B1 to
100, A1 to =B1, B1 to =A1

compatible: there are identical sequences of formula edits that one can perform
over the same spreadsheet which lead to di�erent results in each program. In other
words, the dynamic semantics of their formula languages di�er. Case in point,
all three variants of Excel have di�erent behavior in face of circular references, as
illustrated in Figure 5.5. In desktop and mobile Excel, the application pops a dialog
warning the user about the circular references; in the web-based version no such
warning is present. More important, however, is the di�erence in produced values:
when a user produces a loop between two cells in desktop Excel, both cells instantly
produce error values; in Excel Online and mobile Excel, the most recently updated
cell produces the value zero and the other one retains its previous value.

That such a striking di�erence in behavior has made it to production seems to
show that the UI was not treated as a well-de�ned language whose behavior was
meant to be duplicated. While care has certainly been taken to ensure that Excel
Online and mobile have good compatibility with Excel, apparently this was taken
to mean only that they should load Excel �les and produces identical initial results.
The behavior of Excel Online is especially worrying, as circular references produce
invalid values silently.

Chapter 6

Case study: LabVIEW

LabVIEW1 is a tool for data acquisition, instrument control and industrial automa-
tion, developed by National Instruments. It is a proprietary commercial application,
with extensive support for typical engineering domains such as digital signal process-
ing. The application consists of a graphical programming environment, including a
large amount of bundled functionality for data acquisition, as well as support for
hardware also produced by its vendor. LabVIEW programs can be compiled and
deployed stand-alone, depending only on a runtime package. LabVIEW is noted as
a major success story of a visual programming language in the industry [JHM04].
In it, program code is represented as a set of graphical diagrams.

The programming language of the LabVIEW environment is called G. However,
since there are no other implementations of G or any speci�cation other than the
implementation of LabVIEW itself, it is customary to refer to the language as Lab-
VIEW or use both names interchangeably [KKR09, MS98]; for simplicity, we will
call the both the application and its language LabVIEW throughout the text.

6.1 Overview of the language

In LabVIEW, programs are called virtual instruments (VIs), as their interfaces
mimic laboratory instruments, with buttons, scopes and gauges. This is a clear
nod to its application domain, since the developer of the tool is also a vendor of
physical hardware instruments.

As depicted in Figure 6.1, each VI has always two parts:

• the front panel, which is the user program's interface. It contains elements that
provide inputs and outputs to the program, presented as graphical widgets for
interaction or visualization.

• the block diagram, which is the data�ow graph. It contains all elements that are
present in the front panel (this time in iconic mode) as well as any additional
nodes which represent functions to be applied to data, e�ectively constructing
the program.

1http://ni.com/labview/

79

http://ni.com/labview/

CHAPTER 6. CASE STUDY: LABVIEW 80

Figure 6.1: The main interface of LabVIEW. Each virtual instrument appears in
two windows: the front panel (left) and the block diagram (right).

All widgets included in the front panel are either input elements, called controls in
LabVIEW, or output elements, called indicators. This dichotomy leads to a much
simpler model for UI programming, as opposed to typical GUI frameworks where one
needs to implement handlers to various events that read-write widgets may produce.
Indicators appear as write-only nodes in the block diagram and read-only widgets
in the front panel; contrariwise, controls appear as data-entry widgets in the front
panel that are read-only nodes in the block diagram.

When running a program inside the LabVIEW environment, the block diagram
is still visible when running, but it is read-only. At runtime, the interaction with
the block diagram is limited. It can only be decorated with temporary probes for
debugging purposes, attached to wires. When a LabVIEW program is compiled and
deployed, only the front panel is visible.

It is possible to update control values from the block diagram using more ad-
vanced features of the language that are less evident in its UI, but the environment
is conducive to a simpler input/output discipline which presents data �owing from
controls, to the block diagram, and �nally to indicators.

6.1.1 Execution modes

There are two modes of execution, which can be launched, respectively, by the �rst
two icons in the toolbars depicted in Figure 6.1. In the LabVIEW UI they are simply
called �Run� and �Run continuously�. We will therefore call these modes single-shot
and continuous.

In single-shot mode, all nodes and controls structures at the top-level graph are
�red at most once; control structures may loop, causing inner nodes to �re multiple
times. To begin the execution of this mode, LabVIEW �res all controls and nodes
that do not depend on other objects, and execution continues until there are no more
values to be propagated. When all values propagate to the appropriate indicators,
their values are updated in the UI and the execution halts, bringing LabVIEW back
to edit mode. However, if a diagram contains an in�nite loop, for example, the
program will run forever. Since controls are only �red at the beginning of execution,

CHAPTER 6. CASE STUDY: LABVIEW 81

further inputs entered by the user while a single-shot execution runs have no e�ect
on that execution. Controls and indicators retain their last values.

Continuous mode is equivalent to enclosing the entire program in an in�nite
loop and �ring controls on each iteration. Each iteration of this continuous run
is equivalent to one single-shot execution: all controls are �red, and the graph
evaluation essentially restarts on each step, except that two kinds of objects, shift
registers and feedback nodes, also retain their values from iteration to iteration.
These two objects, which we will describe in detail in the next section, are the
only nodes that can represent cyclic connections in the graph. In e�ect, single-shot
execution is acyclic, and cycles can only propagate values from one iteration of a
graph (or subgraph) to the next.

Two restrictions ensure that at most one value arrives at an input port during
an iteration: �rst, that cycles only happen across iterations; second, that only one
wire can be connected to an input port. This characterizes a static data�ow model,
for which no bu�ers are necessary in input ports. This greatly simpli�es scheduling
and memory management: it is not possible to produce a stack over�ow through
an execution cycle, or a bu�er over�ow in nodes (for there are no bu�ers). As we
will see below, however, the presence of aggregate data types brings back concerns
about memory management.

Each control is �red only once in single-shot mode and only at the beginning
of each iteration of the main graph in continuous mode. This means that having a
long-running main graph in continuous mode leads to an unresponsive VI.

6.1.2 Data types and wires

The language features primitive and structured data types. It supports a large
number of primitive basic types: 8, 16, 32 and 64 bit integers; �xed-point, �oating-
point and complex numbers of various sizes. For structured data, LabVIEW includes
single and multi-dimensional arrays, as well as record types called clusters.

Controls, nodes and indicators are connected through wires, which is how edges
in the data�ow graph are called. Apart from a special �dynamic� wire which sees
limited use in LabVIEW as it demands special conversions, wires are in general
statically typed: each wire has a data type assigned to it. In the UI, the color,
thickness and stripe pattern of the wire indicates its type: the color represents
the base type (integer, �oating point, array, cluster), the thickness represents data
dimensions (scalar, single or multidimensional array) and additional styling such as
stripe patterns are used for particular types, such as waveforms and errors, which
are just prede�nitions for particular cluster types. For example, a waveform is a
cluster containing on array of data points, a numeric timestamp and a numeric
interval value between data samples. Error data �ows as a cluster of three values:
a boolean indicator an error condition, a 32-bit integer with the error code, and a
string containing source information.

Some types support automatic coercions. For example, it is possible to connect
an integer output port to a �oating-point input port. The resulting wire has integer
type: coercion happens at the input edge of the wire.

Not all types can be visually distinguished in the interface. Apart from the

CHAPTER 6. CASE STUDY: LABVIEW 82

Figure 6.2: Looping constructs in LabVIEW, a �for� and a �while� loop.

especially prede�ned clusters like waveform and error, all user-de�ned cluster types
look alike. For these wires, the contextual help window serves as a useful aid,
describing the complete type of the wire under the mouse cursor.

Representing data structures is a well known di�culty in the area of data�ow
[JHM04]. LabVIEW takes a simple approach: structured data such as arrays and
clusters still �ow as a single data�ow packet. The transfer of a whole array between
two nodes happens as a single �ring through an array-typed wire. To compensate
for the low granularity of arrays in the �ow of data, LabVIEW o�ers a number
of nodes with complex array operations. New functionality to make it easier to
manipulate arrays continues to be added. All three of the new plug-ins introduced
in LabVIEW 2015 that were suggested by users of the vendor's discussion forums
deal with array types: �Change to Array or Element�, �Size Array Constants to
Contents�, �Transpose 2D Array�. This indicates that users need high-level array
operations.

6.1.3 Looping and cycles

From the end-user's perspective, LabVIEW programs are graphs that can contain
cycles, but these are controlled via the use of explicit feedback nodes and structured
looping constructs.

The LabVIEW UI enforces that the only connections producing explicit cycles
in a graph are those connecting feedback nodes: wiring any two objects in the
graph producing a cycle automatically inserts a feedback node between them. This
feedback node exists solely to store the value in between executions of the graph. In
Figure 6.1, feedback nodes appear as light orange nodes containing a ← sign.

Structured looping constructs are available, mirroring those available in tradi-
tional textual languages. The �for-loop� and �while-loop� constructs act as their
familiar equivalents. In both cases, the looping construct appears in the UI as a
frame inside the graph: they are both depicted in Figure 6.2. The �while� struc-
ture, presented at the right, always runs at least once and the condition can be
negated by clicking on the green 	 symbol, so it is more like either a �do-while� or
a �repeat-until� construct. The frame of the loop encloses a subgraph and controls
its iteration. The subgraph may produce one or more values that are sent out when

CHAPTER 6. CASE STUDY: LABVIEW 83

the iteration completes.
Values may also be sent from one iteration of the loop to the next through the

use of shift registers. A shift register appears as a pair of small nodes at the edges
of the loop frame: one incoming connector at the right and one outgoing connector
at the left. The �for� loop at the left in Figure 6.2 showcases a shift register. Shift
registers are conceptually similar to how textual data�ow languages like Lucid allow
iteration, with x and next x holding distinct values. The presence of a shift register
denotes an implicit cycle in the graph.

In short, feedback nodes are constructs for sending data through iterations of the
main graph when in continuous mode, and shift registers are constructs for sending
data through iterations of a loop subgraph. It is notable that while functionally
very similar, they have very di�erent representations in the UI.

6.1.4 Timing

LabVIEW o�ers two wait functions: �Wait Until Next ms Multiple� and �Wait�. The
former monitors a millisecond counter and waits until it reaches a multiple of a given
number, controlling the loop execution rate by holding back the loop step. This is
designed for the synchronization of loops, typically when performing device reads
and outputs to indicators in the interface. Note that the multiple may happen right
after the loop starts, so the delay for the �rst iteration of the loop is indeterminate.
The latter function, �Wait�, always waits the speci�ed amount of time, e�ectively
adding a pause of constant size between steps of the loop.

The �ring of a wait node inside a loop construct holds back the next step of
the loop, e�ectively controlling the execution rate, assuming the rest of the code
in the loop takes less time to execute than the con�gured delay. When multiple
parallel loops exist in the graph, using �Wait Until Next ms Multiple� allows one
to synchronize them to millisecond precision, which is often good enough for the
domain of data acquisition hardware. It is amusing to note that the icon for �Wait
Until Next ms Multiple� (visible in Figure 6.2) is a metronome, a device for counting
tempo in music; in Pure Data, the function for generating periodic messages is called
metro, referencing the same device. The image of the metronome reinforces the idea
of �orchestration� between parallel agents.

6.1.5 Tunnels

Tunnels are nodes that send or receive data into or out of a structure. By connecting
a wire from a node inside a structure to another node outside it or vice versa, a tunnel
is automatically created at the edge of the structure frame.

When using tunnels to send values into or out of loop structures, the values are
transferred only at the beginning or at the end of the execution of the loop. Figure
6.3 illustrates the behavior of input and output tunnels in loops. We have three
while-loops in which the termination condition is connected to a boolean button,
the iteration counter is connected to a numeric indicator, and the loop timing is
controlled to execute one iteration per 1000 ms. In Loop A, both the inputs and
outputs are connected through tunnels. The end result is that the termination value

CHAPTER 6. CASE STUDY: LABVIEW 84

Figure 6.3: Interaction of loops and tunnels in LabVIEW. Loop A never updates its
output; Loop B updates only at the end; Loop C updates every second.

Figure 6.4: Connection errors in LabVIEW. Connecting two data sources (A1 and
A2) directly to an input (A3) produces a helpful error message. If one of the connec-
tions goes through a tunnel, however (B2), this produces a tunnel direction inference
error.

becomes �xed in the loop as the value of Boolean A goes through the tunnel. If
the value of Boolean A at the beginning of execution is true, the loop runs for only
one iteration and 0 is sent to Indicator A. If Boolean A is false at the beginning of
execution, the loop never stops, and clicking the button has no e�ect. In Loop B,
Boolean B is inside the loop, so its value is sent to the conditional terminal on each
iteration. The loop stops once Boolean B is set to true, and only then the iteration
value is sent via the output tunnel to Indicator B. In Loop C, the interface displays
Indicator C being updated once a second, as long as Boolean C is false.

Because the direction of tunnels is inferred, incorrect connections involving tun-
nels produce less useful messages than similar connections not going through a tun-
nel. Figure 6.4 illustrates how tunnel inference a�ects error messages. When one
connects two controls (A1 and A2) to an indicator (A3), this produces one error
message that says �a wire can be connected to only one data source�. When one
attempts a similar connection (B1 and B2 to B3), but one of these data sources (B2)
goes through a tunnel, this produces three identical error messages that say �wire
connected to an undirected tunnel: a tunnel on this wire cannot determine whether
it is an input or an output�. This is typical of error messages involving inference:
the inference engine of the language detects that a uni�cation was not possible, but
cannot tell which one of the two mismatching elements is the incorrect one.

6.1.6 Other control structures

LabVIEW also supports other control structures, two of which will be brie�y dis-
cussed here: �case� and �sequence�. Both structures hold an arbitrary number of
subgraphs. The �case� structure is presented as a frame that has a number of pages,

CHAPTER 6. CASE STUDY: LABVIEW 85

Figure 6.5: �Case� structure in LabVIEW

Figure 6.6: �Sequence� structure in LabVIEW

each of them holding a subgraph for each case. It accepts an enumeration value
as input to select the active page. Figure 6.5 illustrates a �case� structure. The
enumeration selects which operation is to be applied to the two inputs A and B.

The �sequence� structure is presented in the UI as �lm roll with a series of frames,
each holding a subgraph to be executed one after the other. This is an escape
from the pure data�ow model, and provides a way to force a particular control
�ow structure regardless of data dependencies. Figure 6.5 illustrates a �sequence�
structure. Note that inputs A and B arrive at the input tunnels of both frames
immediately, but the second frame will only execute after the �rst frame �nishes.
The output tunnel for the �rst frame will only �re after one second, so the �Numeric�
indicator and the �Product� indicator will be updated at the same time.

6.2 An interpreter modeling the semantics of Lab-

VIEW

A di�culty in discussing the semantics of LabVIEW is that is has no published
speci�cation. Its documentation often resorts to examples to explain concepts, and
does not serve an an exhaustive speci�cation of the language. Previous attempts
on the formalization of LabVIEW have been restricted to subsets of the language,

CHAPTER 6. CASE STUDY: LABVIEW 86

and based themselves on its user manual and experimenting with the tool itself. In
[MS98], Mok and Stuart map a subset of the language to RTL (real-time logic), a
�rst-order logic used for describing real-time and embedded systems; they note that
design decisions had to be made in points where the precise behavior was not clear.
In [KKR09], Kaufmann et al. map a purely functional subset of LabVIEW into a
dialect of Common Lisp used by the ACL2 theorem prover.

Like previous work in the literature, we designed the model based on LabVIEW's
documentation and experimentation with the tool itself. We limited ourselves to the
core logic of graph evaluation, the main control structures, and a few nodes that
would allow us to run examples and model time-based execution. Additional features
of LabVIEW that were not implemented include support for multiple non-reentrant
VIs, global variables (which are not really global variables in the traditional sense
but actually references to external VIs); object-oriented features, advanced event
handling for controls and indicators, and object references. Still, we believe this
work to be a more detailed model than the ones previously available in the literature.
For instance, it models sequences and nodes with side-e�ects.

This implementation uses only standard modules included in the Haskell Plat-
form:

module LvInterpreter where

import Data.Sequence (Seq , fromList , index , update, elemIndexL)
import qualified Data.Sequence as Seq (length, take)
import Data.Char
import Data.List
import Data.Maybe
import Data.Bits
import Data.Foldable (toList)
import Data.Generics .Aliases (orElse)

6.2.1 Representation of programs

As mentioned in Section 6.1, a program in LabVIEW is called a VI. It is a graph
connecting di�erent kinds of objects. In LabVIEW terminology, these objects are
called controls, which are input-only, indicators, which are output-only, and nodes,
which are all other operations. Throughout the implementation, we will use this
nomenclature; in particular the name �node� will be used only for graph objects
which are not controls or indicators. Graph objects are connected through wires.
To avoid confusion with objects in the interpreter implementation, we will refer to
graph objects (controls, indicators and nodes) as elements.

We represent a VI as a record containing a series of lists, enumerating controls,
indicators, nodes and wires. Controls, indicators and nodes are paired with their
names for display purposes only. The list of wires constitutes an adjacency list for
the graph connections.

data LvVI = LvVI {
vCtrls :: [(String ,LvControl)],

CHAPTER 6. CASE STUDY: LABVIEW 87

vIndics :: [(String ,LvIndicator)],
vNodes :: [(String ,LvNode)],
vWires :: [LvWire]
}

deriving Show

A control in LabVIEW is an input widget in the VI's front panel, which also
gets a representation as an object in the block diagram. However, since LabVIEW
includes structured graphs composed of subgraphs representing structures such as
for- and while-loops, we build these graphs in the interpreter recursively, declaring
subgraphs as LvVI objects. For this reason, we use controls and indicators not only
to represent GUI objects of the front panel, but also inputs and outputs of subgraphs.
To do this, we declare a number of types of controls: a plain control that corresponds
to a GUI object; an �auto� control that represents an automatically-generated input
value, such as the increment count in a for-loop; a �tunnel� control, which is an input
that connects data from the enclosing graph to the subgraph; and a �shift-register�
control, which is the input terminator for shift registers (a construct to send data
across iterations of a loop).

data LvControl = LvControl LvValue
| LvAutoControl
| LvTunControl
| LvSRControl LvValue

deriving Show

An indicator in LabVIEW is an output widget in the VI's front panel. Like
controls, indicators are represented both in the front panel (as a GUI widget) and
in the block diagram (as a connectable object). For the same reasons as explained
above for controls, we have di�erent kinds of indicators: the plain indicator, which
represents a GUI indicator proper; the �shift-register� indicator, which sends data to
its respective shift-register control (represented by the numeric index of the control
in its constructor) for the next execution of a loop; and the �tunnel� indicator, which
sends data out of the subgraph back to the enclosing graph.

Tunnel indicators can be of di�erent types: �last value�, which sends out the value
produced by the last iteration of the subgraph; �auto-indexing�, which produces an
array accumulating all values received by the tunnel across all iterations of the
subgraph; and �concatenating�, which concatenates all values received. Here, we
implement the �last value� and �auto-indexing� modes, since the �concatenating�
mode is a mere convenience that could be achieved by concatenating the values of
the array returned in the �auto-indexing� mode.

The LabVIEW interface enables auto-indexing by default when sending data out
of for-loops, but this can be overridden by the user in the UI.

data LvIndicator = LvIndicator LvValue
| LvSRIndicator Int
| LvTunIndicator LvTunnelMode

deriving Show

CHAPTER 6. CASE STUDY: LABVIEW 88

data LvTunnelMode = LvAutoIndexing
| LvLastValue

deriving Show

There are several kinds of nodes in LabVIEW. The vast majority are functions,
but there are also control structures, constants and feedback nodes.

Functions are identi�ed in our implementation by their their names. They can
have zero or more input ports, and zero or more output ports.

There are various kinds of control structures. Due to the fact that many of
them share code in our implementation, we grouped them in the LvStructure type
constructor: those are while-loops, for-loops, sequences, and sub-VIs. The case-
structure controls a list of sub-VIs, and for this reason is handled separately with
the LvCase constructor.

A constant is a node that holds a value. It has a single output port and imme-
diately �res its value.

A feedback node holds the value it receives through its input port and �res it the
next time the program is executed, when running in continuous mode as explained
in Section 6.1.1.

data LvNode = LvFunction String
| LvStructure LvStrucType LvVI
| LvCase [LvVI]
| LvConstant LvValue
| LvFeedbackNode LvValue

deriving Show

data LvStrucType = LvWhile
| LvFor
| LvSequence
| LvSubVI

deriving Show

LabVIEW supports a large number of primitive numeric types: single, dou-
ble and extended-precision �oating-point numbers; �xed-point numbers; signed and
unsigned integers of 8, 16, 32 and 64 bits; single, double and extended-precision
complex numbers. We chose to implement only one �oating-point and one integer
type.

Besides these, the interpreter also supports the following types: strings; booleans;
the clusters, which are a heterogeneous tuple of values (working like a record or
�struct�); and homogeneous arrays.

Unlike LabVIEW, our implementation allows arbitrarily recursive types (e.g. we
support a cluster of arrays of arrays of clusters).

Though LabVIEW supports arrays of clusters, and clusters of arrays, it does not
support arrays of arrays. The recommended alternative is to use an �array of cluster
of array�: an array where elements are single-element clusters containing an array.
This limitation is an explicit design decision, harking back to the development of
LabVIEW 2.0 in 19882.

2https://forums.ni.com/t5/LabVIEW-Idea-Exchange/Add-Support-for-Array-of-

Array/idi-p/1875123

https://forums.ni.com/t5/LabVIEW-Idea-Exchange/Add-Support-for-Array-of-Array/idi-p/1875123
https://forums.ni.com/t5/LabVIEW-Idea-Exchange/Add-Support-for-Array-of-Array/idi-p/1875123

CHAPTER 6. CASE STUDY: LABVIEW 89

Since we assume that input programs are properly type-checked, implementing
the same restrictions that LabVIEW enforces to aggregate data types could be easily
done in the type-checking step.

data LvValue = LvDBL Double
| LvI32 Int
| LvSTR String
| LvBool Bool
| LvCluster [LvValue]
| LvArr [LvValue]

deriving (Show ,Eq ,Ord)

A wire is a connection between two objects, represented as a source-destination
pair of port addresses. Each port address, denoted Lt , e, pM, is a triple containing
the element type (control, indicator or node), the element index and the port index
within the element. For the source tuple, the port index denotes the element's
output port; for the destination tuple, it denotes the input port.

data LvWire = LvWire {
wSrc :: L·, ·, ·M,
wDst :: L·, ·, ·M
}

deriving Show

data L·, ·, ·M = LLvElemType, Int , IntM
deriving Eq

instance Show L·, ·, ·M where
show Ltyp, eidx , pidx M =
"{" ++ show typ ++ " " ++ show eidx ++ ", " ++ show pidx ++ "}"

data LvElemType = LvC
| LvI
| LvN

deriving (Show ,Eq)

6.2.2 Representation of state

Now that the static representation of program code is de�ned, we move on to de�ning
the dynamic representation of program state during execution. The representation of
a state in our interpreter is a record containing the following values: the timestamp,
a scheduler queue listing the next elements that need to be processed, and three
sequences that store the internal states of nodes, controls and indicators. For controls
and indicators, the sequences store their values. A VI always initializes controls and
indicators with default values. Elements in the scheduler queue are denoted as Lt , eM,
where t is the type of the element (control, indicator or node) and e is the numeric
index of the element in its appropriate list in the LvVI object.

data LvState = LvState {
sTs :: Int ,

CHAPTER 6. CASE STUDY: LABVIEW 90

sPrng :: Int ,
sSched :: [L·, ·M],
sNStates :: Seq LvNodeState,
sCtrlVals :: Seq LvValue,
sIndicVals :: Seq LvValue
}

deriving Show

data L·, ·M = LLvElemType, IntM
deriving Eq

instance Show L·, ·M where
show Ltyp, eidx M =
"{" ++ show typ ++ " " ++ show eidx ++ "}"

For node states, the interpreter stores the contents of the input ports and an
optional continuation. Each input port may be either empty or contain a single
value, in accordance with the static data�ow model.

data LvNodeState = LvNodeState {
nsInputs :: Seq (Maybe LvValue),
nsCont :: Maybe LvCont
}

deriving Show

For functions, we use continuations to model computations that run over time.
An operation that needs to continue running beyond the current timestamp imple-
ments the rest of the computation as a separate function, which will be scheduled to
run at the next time tick. In the LvKFunction constructor we store the continuation
function itself (kFn) and the values that will be passed to it (kArgs). These val-
ues act as the operation's internal memory. A continuation function returns either
LvReturn, which contains the result values to be sent through the function's output
ports, or LvContinue, which encapsulates the next continuation to be executed as
the operation resumes running.

For subgraph structures, such as loops, the continuation of its execution is the
state of the sub-VI. Note that, this way, the interpreter models a hierarchical tree
of scheduler queues, as each structure node keeps an LvState with its own sSched
queue. This way, multiple subgraphs can run concurrently.

data LvCont = LvKFunction {
kFn :: LvWorld → [LvValue]→ (LvWorld ,LvReturn),
kArgs :: [LvValue]
}
| LvKState LvState

instance Show LvCont where
show (LvKFunction args) = "KFunction(" ++ show args ++ ")"
show (LvKState s) = "KState[" ++ show s ++ "]"

data LvReturn = LvReturn [LvValue]
| LvContinue LvCont

CHAPTER 6. CASE STUDY: LABVIEW 91

In all functions implementing LabVIEW nodes, we include an additional argu-
ment and an additional result representing access to side-e�ects that a�ect the state
of the external world.

These extra values allow us to model impure functions whose e�ects depend not
only on the inputs received through wires in the data�ow graph. In particular, this
allows us to model the relationship between graph evaluation and time.

In our model, a simpli�ed view of this �external world� is implemented as the
LvWorld type. It consists of a read-only timestamp, which we will use as a model
of a �system clock� for timer-based functions, and the read-write pseudo-random
number generator (PRNG) state, which can be consumed and updated.

data LvWorld = LvWorld {
wTs :: Int ,
wPrng :: Int
}

Note that LvWorld is a subset of our LvState object, which represents the mem-
ory of the VI being executed. In this sense, this is the part of the outside world that
is visible to the function.

6.2.3 Execution

The execution mode of LabVIEW is data-driven. The user enters data via controls,
which propagate their values through other nodes, eventually reaching indicators,
which provide feedback to the user via their representations in the front panel.

This interpreter models a single-shot execution (as discussed in Section 6.1.1).
Continuous execution is semantically equivalent as enclosing the entire VI in a while-
loop.

6.2.3.1 Main loop

The execution of the interpreter is a loop of evaluation steps, which starts from an
initial state de�ned for the VI and runs producing new states until a �nal state with
an empty scheduler queue is produced.

runVI :: LvVI → IO ()
runVI vi =

loop (initialState 0 42 vi)
where

loop s = do
print s
case sSched s of

[]→ return ()
→ loop (run s vi)

CHAPTER 6. CASE STUDY: LABVIEW 92

6.2.3.2 Initial state

The initial state consists of the input values entered for controls, the initial values
of indicators, and empty states for each node, containing the appropriate number of
empty slots corresponding to their input ports. It also contains the initial schedule,
which is the initial list of graph elements to be executed.

initialState :: Int → Int → LvVI → LvState
initialState ts prng vi =

LvState {
sTs = ts + 1,
sPrng = prng ,
sCtrlVals = fromList $ map (makeCtrlVal ◦ snd) (vCtrls vi),
sIndicVals = fromList $ map (makeIndicVal ◦ snd) (vIndics vi),
sNStates = fromList $ mapIdx makeNState (vNodes vi),
sSched = initialSchedule vi
}
where

makeNState :: (Int , (String ,LvNode))→ LvNodeState
makeNState (i , (name, node)) =

LvNodeState {
nsInputs = emptyInputs $ nrInputs i node,
nsCont = Nothing
}

nrInputs :: Int → LvNode → Int
nrInputs i (LvFunction) = nrWiredInputs i vi
nrInputs (LvConstant) = 0
nrInputs (LvStructure subvi) = length $ vCtrls subvi
nrInputs (LvCase subvis) = length $ vCtrls (head subvis)
nrInputs (LvFeedbackNode) = 1

makeCtrlVal :: LvControl → LvValue
makeCtrlVal (LvControl v) = v
makeCtrlVal (LvSRControl v) = v
makeCtrlVal = LvI32 0

makeIndicVal :: LvIndicator → LvValue
makeIndicVal (LvIndicator v) = v
makeIndicVal (LvTunIndicator LvAutoIndexing) = LvArr []
makeIndicVal = LvI32 0

mapIdx :: ((Int , a)→ b)→ [a]→ [b]
mapIdx fn l = zipWith (curry fn) (indices l) l

emptyInputs :: Int → Seq (Maybe LvValue)
emptyInputs n = fromList (replicate n Nothing)

The initial schedule is de�ned as follows. All controls, constants and feedback
nodes are queued. Then, all function and structure nodes which do not depend on
other inputs are queued as well. Here, we make a simpli�cation and assume that VIs

CHAPTER 6. CASE STUDY: LABVIEW 93

do not have any functions with mandatory inputs missing. This could be veri�ed in
a type-checking step prior to execution.

Note also that the code below implies the initial schedule follows the order of
nodes given in the description of the LvVI record, leading to a deterministic execu-
tion of our intpreter. LabVIEW does not specify a particular order.

initialSchedule :: LvVI → [L·, ·M]
initialSchedule vi =

map LLvC , ·M (indices $ vCtrls vi)
++ map LLvN , ·M (filter (λi → isBootNode i (vNodes vi !! i)) (indices $ vNodes vi))
where

isBootNode (,LvConstant) = True
isBootNode (,LvFeedbackNode) = True
isBootNode i (,LvFunction) | nrWiredInputs i vi ≡ 0 = True
isBootNode i (,LvStructure LvWhile) | nrWiredInputs i vi ≡ 0 = True
isBootNode i (,LvStructure LvSubVI) | nrWiredInputs i vi ≡ 0 = True
isBootNode i (,LvStructure LvSequence) | nrWiredInputs i vi ≡ 0 = True
isBootNode = False

A node can only be �red when all its connected inputs have incoming data. We
speci�cally check for connected inputs because some LabVIEW nodes have optional
inputs. We assume here for simplicity that the type-checking step prior to execution
veri�ed that the correct set of mandatory inputs has been connected. Here, we derive
the number of connections of a node from the list of wires.

nrWiredInputs :: Int → LvVI → Int
nrWiredInputs idx vi =

1 + foldl ′ maxInput (−1) (vWires vi)
where

maxInput :: Int → LvWire → Int
maxInput mx (LvWire LLvN , i , nM) | i ≡ idx = max mx n
maxInput mx = mx

6.2.3.3 Event processing

The main operation of the interpreter consists of taking one entry o� the scheduler
queue, incrementing the timestamp, and triggering the event corresponding to that
entry. Every time we produce a new state, we increment the timestamp. The
timestamp, therefore, is not a count of the number of evaluation steps, but is a
simulation of a system clock, to be used by timer operations.

run :: LvState → LvVI → LvState

run s vi
| null (sSched s) = s
| otherwise =
case sSched s of

CHAPTER 6. CASE STUDY: LABVIEW 94

(q : qs)→ let s0 = s {sTs = (sTs s) + 1, sSched = qs }
in runEvent q s0 vi

An event in the queue indicates the graph element to be executed next. Function
runEvent takes a L·, ·M that identi�es the element, a state and a VI, and produces a
new state, with the results of triggering that element:

runEvent :: L·, ·M→ LvState → LvVI → LvState

When triggering a control, its e�ect is to �re its value through its sole output
port.

runEvent LLvC , idx M s0 vi =
fire vi cv LLvC , idx , 0M s0

where
cv = index (sCtrlVals s0) idx

When triggering a node for execution, the event may be triggering either an initial
execution from data �red through its input ports, or a continuation of a previous
execution that has not �nished running. In the former case, the interpreter fetches
the data from the node's input ports and clears it from the node state, ensuring
incoming values are consumed only once. In the latter case, the inputs come from
the data previously stored in the continuation object and the node state is kept as is.
Once the inputs and state are determined, runEvent calls runNode, which produces
a new state and may produce data to be �red through the node's output ports.

runEvent LLvN , idx M s0 vi =
foldl ′ (λs (p, v)→ fire vi v LLvN , idx , pM s) s2 pvs
where

ns = index (sNStates s0) idx
(s1, inputs) =

case nsCont ns of
Nothing → startNode
Just k → continueNode k

(s2, pvs) = runNode (snd $ vNodes vi !! idx) s1 inputs idx

startNode = (s1, inputs)
where

s1 = updateNode idx s0 clearState []
inputs = toList (nsInputs ns)
clearState = ns {nsInputs = clear }
clear = emptyInputs (Seq .length (nsInputs ns))

continueNode k = (s1, inputs)
where

s1 = s0

inputs = case k of
LvKFunction kargs → map Just kargs
LvKState → ⊥

CHAPTER 6. CASE STUDY: LABVIEW 95

When updating the internal state of a node, we use the auxiliary function
updateNode, which increments the timestamp, optionally appends events to the
scheduler queue, and replaces the node state for the node at the given index.

updateNode :: Int → LvState → LvNodeState → [L·, ·M]→ LvState
updateNode idx s ns sched =

s {
sTs = sTs s + 1,
sSched = sSched s ++ sched ,
sNStates = update idx ns (sNStates s)
}

6.2.3.4 Firing data to objects

As shown in the previous section, when objects are triggered for execution, they
may produce new values which are �red through their output ports. The function
fire iterates through the adjacency list of wires, identifying all outward connections
of an object and propagating the value to their destination nodes.

fire :: LvVI → LvValue → L·, ·, ·M→ LvState → LvState
fire vi value addr s =

foldl ′ checkWire s (vWires vi)
where
checkWire s (LvWire src dst) =

if addr ≡ src
then propagate value vi dst s
else s

When a value is propagated to an indicator, its value is stored in the state, with
the appropriate handling for di�erent kinds of tunnel indicators.

propagate :: LvValue → LvVI → L·, ·, ·M→ LvState → LvState
propagate value vi LLvI , dnode, M s =

let
(, indicator) = vIndics vi !! dnode
newValue =

case indicator of
LvIndicator → value
LvSRIndicator → value
LvTunIndicator LvLastValue → value
LvTunIndicator LvAutoIndexing → let arr = index (sIndicVals s) dnode

in insertIntoArray arr value []
in

s {
sTs = sTs s + 1,
sIndicVals = update dnode newValue (sIndicVals s)
}

CHAPTER 6. CASE STUDY: LABVIEW 96

When a value is propagated to a node, the interpreter stores the value in the
nsInputs sequence of the node state. Then, it needs to decide whether the node
needs to be scheduled for execution.

propagate value vi LLvN , dnode, dportM s =
s {

sTs = sTs s + 1,
sSched = sched ′,
sNStates = nss ′

}
where

nss = sNStates s
ns = index nss dnode
inputs ′ = update dport (Just value) (nsInputs ns)
nss ′ = update dnode (ns {nsInputs = inputs ′}) nss
sched ′ =

let
sched = sSched s
entry = LLvN , dnodeM

in
if shouldSchedule (snd $ vNodes vi !! dnode) inputs ′ ∧ entry /∈ sched
then sched ++ [entry]
else sched

To determine if a node needs to be scheduled, the interpreter checks if all its
required inputs contain values. For function nodes, this means that all mandatory
arguments must have incoming values. For structures, it means that all tunnels
going into the structure must have values available for consumption.

This interpreter implements a single node accepting optional inputs, InsertIntoArray
(Section 6.2.5.2); for all other nodes, all inputs are mandatary.

Feedback nodes are never triggered by another node: when they receive a value
through its input port, this value remains stored for the next single-shot execution of
the whole graph. Constants do not have input ports, so they cannot receive values.

shouldSchedule :: LvNode → Seq (Maybe LvValue)→ Bool
shouldSchedule node inputs =

case node of
LvFunction name → shouldScheduleNode name
LvStructure vi → shouldScheduleSubVI vi inputs
LvCase vis → shouldScheduleSubVI (head vis) inputs
LvFeedbackNode → False
LvConstant → ⊥

where
shouldScheduleNode name =

isNothing $ elemIndexL Nothing mandatoryInputs
where

mandatoryInputs =

CHAPTER 6. CASE STUDY: LABVIEW 97

case nrMandatoryInputs name of
Nothing → inputs
Just n → Seq .take n inputs

shouldScheduleSubVI :: LvVI → Seq (Maybe LvValue)→ Bool
shouldScheduleSubVI vi inputs =

isNothing $ find unfilledTunnel (indices $ vCtrls vi)
where

unfilledTunnel cidx =
case vCtrls vi !! cidx of

(,LvTunControl)→ isNothing (index inputs cidx)
→ False

nrMandatoryInputs :: String → Maybe Int
nrMandatoryInputs "InsertIntoArray" = Just 2
nrMandatoryInputs = Nothing

indices :: [a]→ [Int]
indices l = [0 . . (length l − 1)]

6.2.4 Nodes and structures

The function runNode takes care of implementing the general logic for each kind of
node. For functions, it handles the management of continuations; for structures, it
triggers their subgraphs according to each structure's rules of iteration and condi-
tions of termination.

The function runNode takes a node, an input state, a list of input values, the
integer index that identi�es the node in the VI, and produces a new state and a list
of index-value pairs, listing values to be sent through output ports.

runNode :: LvNode → LvState → [Maybe LvValue]→ Int
→ (LvState, [(Int ,LvValue)])

6.2.4.1 Constant nodes

When executed, a constant node simply sends out its value through its single output
port.

runNode (LvConstant value) s1 =
(s1, [(0, value)])

6.2.4.2 Feedback nodes

A feedback node behaves like a constant node: it sends out the value it stores
through its output port. In spite of having an input port, a feedback node is only
triggered at the beginning of the execution of the graph, as determined by the initial
state (Section 6.2.3.2) and �ring rules (Section 6.2.3.4).

CHAPTER 6. CASE STUDY: LABVIEW 98

In our model, an LvFeedbackNode always takes an initialization value. In the
LabVIEW UI, this value can be left out, in which case a default value for the
appropriate data type, such as zero or an empty string, is implied.

runNode (LvFeedbackNode initVal) s1 inputs =
(s1, [(0, fromMaybe initVal (head inputs))])

6.2.4.3 Function nodes

When running a function node, the interpreter �rst checks if it has an existing
continuation pending for the node. If there is one, it resumes the continuation,
applying the function stored in the continuation object k . Otherwise, it triggers the
function (identi�ed by its name) using applyFunction.

The function may return either a LvReturn value, which contains the list of
result values be propagated through its output ports, or a LvContinue value, which
contains the next continuation k ′ to be executed. When a continuation is returned,
the node itself (identi�ed by its address idx) is also scheduled back in the queue,
and no values are produced to be sent to the node's output ports.

runNode (LvFunction name) s1 inputs idx =
let

nss = sNStates s1

ns = index nss idx
world s = LvWorld {wTs = sTs s ,wPrng = sPrng s }
ret =

case nsCont ns of
Nothing → applyFunction name (world s1) inputs
Just k → kFn k (world s1) (catMaybes inputs)

(w ,mk , q , pvs) =
case ret of
(w ,LvReturn outVals)→ (w ,Nothing , [], zip (indices outVals) outVals)
(w ,LvContinue k ′) → (w , Just k ′, [LLvN , idx M], [])

updateWorld w s = s {sPrng = wPrng w }
in

(updateWorld w $ updateNode idx s1 ns {nsCont = mk } q , pvs)

6.2.4.4 Control structures

The interpreter supports �ve kinds of control structures: for-loop, while-loop, se-
quence, case and sub-VI. They are all implemented similarly, by running a subgraph
(itself represented as an instance of LvVI , like the main graph), and storing a state
object for this subgraph as a continuation object of the node state for the enclosing
graph (represented as LvState, like the main state). Running this subgraph may
take several evaluation steps, so the enclosing graph will continuously queue it for
execution until it decides it should �nish running. Each time the scheduler of the
enclosing graph triggers the structure node, it will run the subgraph consuming one

CHAPTER 6. CASE STUDY: LABVIEW 99

event of the internal state's own scheduler queue. This will, in e�ect, produce a
round-robin of all structures that may be running concurrently.

This common behavior is implemented in the runStructure function that will be
presented below. The implementations of runNode for all structures use runStructure,
di�ering by the way they control triggering and termination of subgraphs.

The for-loop provides runStructure with a termination function shouldStop which
determines if the loop should stop comparing the value of the counter control (at
index 0) with the limit control (at index 1). Also, it uses the helper function
initCounter to force the initial value of control 0 when the structure is triggered
for the �rst time (that is, when it is not resuming a continuation).

runNode (LvStructure LvFor subvi) s1 inputs idx =
runStructure subvi shouldStop s1 idx (initCounter s1 idx inputs)
where

shouldStop s =
(i + 1 > n)
where

LvI32 i = index (sCtrlVals s) 0
LvI32 n = coerceToInt $ index (sCtrlVals s) 1

coerceToInt v@(LvI32) = v
coerceToInt (LvDBL d) = LvI32 (floor d)

The while-loop structure in LabVIEW always provides an iteration counter, im-
plemented in the interpreter as a counter control at index 0. As in the for-loop, it is
initialized using the helper function initCounter . The termination function for the
while-loop checks for the boolean value at the indicator at index 0.

runNode (LvStructure LvWhile subvi) s1 inputs idx =
runStructure subvi shouldStop s1 idx (initCounter s1 idx inputs)
where

shouldStop s =
¬ test
where

LvBool test = index (sIndicVals s) 0

Sequence nodes in LabVIEW are a way to enforce order of execution irrespective
of data dependencies. In the LabVIEW UI, sequences are presented as a series of
frames presented like a �lm-strip. In our interpreter, we implement each frame of the
�lm-strip as a separate LvStructure object containing a boolean control at input port
0 and a boolean indicator at output port 0. Frames of a sequence are connected
through a wire connecting the frame's indicator 0 to the next frame's control 0.
This way, we force a data dependency between frames, and the implementation
of runNode for sequences pushes a boolean value to output port 0 to trigger the
execution of the next frame in the sequence. This connection is explicit in our
model, but it could be easily hidden in the application's UI.

runNode (LvStructure LvSequence subvi) s1 inputs idx =
let

CHAPTER 6. CASE STUDY: LABVIEW 100

(s2, pvs) = runStructure subvi (const True) s1 idx inputs
ns2 = index (sNStates s2) idx
nextq = [(0,LvBool True) | isNothing (nsCont ns2)]

in
(s2, pvs ++ nextq)

Case structures are di�erent from the other ones because they contain a list
of subgraphs. All subgraphs representing cases are assumed to have the same set
of controls and indicators, and they all have a numeric control at index 0 which
determines which case is active. LabVIEW denotes cases using enumeration types,
but in the interpreter we simply use an integer.

When a case node is triggered, runNode needs to choose which VI to use with
runStructure. In its �rst execution, it reads from the input data sent to control 0; in
subsequent executions, when those inputs are no longer available, it reads directly
from the control value, which is stored in the node state. Note that since case VIs
have the same set of controls and indicators, they are structurally equivalent, and the
initialization routine in Section 6.2.3.2 simply uses the �rst case when constructing
the initial empty state.

A case subgraph does not iterate: it may take several schedule events to run
through a full single-shot execution, but once the subgraph scheduler queue is
empty, it should not run again. For this reason, the termination function is simply
const True.

runNode (LvCase subvis) s1 inputs idx =
let

ns1 = index (sNStates s1) idx
n = case nsCont ns1 of

Nothing → case inputs of
Just (LvI32 i) : → i

→ 0
Just → (λ(LvI32 i)→ i) $

fromMaybe (error "no input 0") $ index (nsInputs ns1) 0
(s2, pvs) = runStructure (subvis !! n) (const True) s1 idx inputs
s3 =

case nsCont ns1 of
Nothing → let

ns2 = index (sNStates s2) idx
inputs = update 0 (Just (LvI32 n)) (nsInputs ns2)
ns3 = ns2 {nsInputs = inputs }

in
updateNode idx s2 ns3 []

Just → s2

in
(s3, pvs)

Finally, a sub-VI structure has a simple implementation, where we launch the
subgraph with runStructure, directing it to run once and performing no additional
operations to its state.

CHAPTER 6. CASE STUDY: LABVIEW 101

runNode (LvStructure LvSubVI subvi) s1 inputs idx =
runStructure subvi (const True) s1 idx inputs

The core to the execution of all structure nodes is the runStructure function,
which we present here. This function takes as arguments the subgraph to execute,
the termination function to apply, the enclosing graph's state, and the index of the
structure in the enclosing VI; it returns a pair with the new state and a list of
port-value pairs to �re through output ports.

runStructure :: LvVI
→ (LvState → Bool)
→ LvState → Int → [Maybe LvValue]
→ (LvState, [(Int ,LvValue)])

Its execution works as follows. First, it determines sk1, which is the state to use
when running the subgraph. If there is no continuation, a new state is constructed
using initialState (Section 6.2.3.2), with the input values received as arguments
entered as values for the structure's controls. If there is a continuation, it means
it is resuming execution of an existing state, so it reuses the state stored in the
LvKState object, merely updating its timestamp.

Then, it calls the main function run (Section 6.2.3.3) on the subgraph subvi and
state sk1. This produces a new state, sk2. If the scheduler queue in this state is
not empty, this means that the single-shot execution of the graph did not �nish. In
this case, the interpreter stores this new state in a continuation object nextk and
enqueues the structure in the main state so it runs again.

If the scheduler queue is empty, runStructure runs the termination check shouldStop
to determine if it should schedule a new iteration of the subgraph. If a new iteration
is required, a new state is produced with nextStep, which increments the iterator
and processes shift registers.

At last, if the execution does not produce a continuation, this means the structure
terminated its single-shot execution: the values of the indicators are sent out to the
structure's output ports.

runStructure subvi shouldStop s1 idx inputs =
let

nss = sNStates s1

ns = index nss idx
ts ′ = sTs s1 + 1
prng = sPrng s1

sk1 =
case nsCont ns of
Nothing → setCtrlVals inputs (initialState ts ′ prng subvi)
Just (LvKState st)→ st {sTs = ts ′}

setCtrlVals inputs s =
s {

sTs = sTs s + 1,
sCtrlVals = fromList (zipWith fromMaybe (toList $ sCtrlVals s) inputs)

CHAPTER 6. CASE STUDY: LABVIEW 102

}
sk2 = run sk1 subvi

nextk
| ¬ (null (sSched sk2)) = Just (LvKState sk2)
| shouldStop sk2 = Nothing
| otherwise = let LvI32 i = index (sCtrlVals sk2) 0

in Just (LvKState (nextStep subvi sk2 (i + 1)))

qMyself = [LLvN , idx M | isJust nextk]

s2 = s1 {
sTs = sTs sk2 + 1,
sPrng = sPrng sk2,
sSched = sSched s1 ++ qMyself ,
sNStates = update idx (ns {nsCont = nextk }) nss
}
pvs = zip (indices $ vIndics subvi) (toList $ sIndicVals sk2)

in
(s2, if isJust nextk then [] else pvs)

Structure nodes use the following auxiliary functions, already mentioned above.
Function initCounter checks whether the node state has a continuation, and initial-
izes the iteration counter if it doesn't. Function nextStep resets the scheduler for
the state of the subgraph, and implements the shift register logic, copying values
from indicators marked as LvSRIndicator to their corresponding controls in the new
state.

initCounter :: LvState → Int → [Maybe LvValue]→ [Maybe LvValue]
initCounter s idx inputs =

case nsCont (index (sNStates s) idx) of
Nothing → Just (LvI32 0) : tail inputs

→ inputs

nextStep :: LvVI → LvState → Int → LvState
nextStep vi s i ′ =

s {
sTs = sTs s + 1,
sSched = initialSchedule vi ,
sCtrlVals = cvs ′′

}
where

cvs ′ = update 0 (LvI32 i ′) (sCtrlVals s)
cvs ′′ = foldl ′ shiftRegister cvs ′ $ zip (vIndics vi) (toList (sIndicVals s))

shiftRegister :: Seq LvValue → ((String ,LvIndicator),LvValue)→ Seq LvValue
shiftRegister cvs ((,LvSRIndicator cidx), ival) =

update cidx ival cvs
shiftRegister cvs = cvs

CHAPTER 6. CASE STUDY: LABVIEW 103

6.2.5 Operations

The �nal section of the interpreter is the implementation of the various operations
available in the language as function nodes, forming its �standard library�. These
operations are implemented as cases for function applyFunction, which takes a string
with the name of the function, an instance of the outside world, the list of input
values, and produces a return value, which may be a list of results or a continuation,
along with the updated state of the world.

applyFunction :: String → LvWorld → [Maybe LvValue]→ (LvWorld ,LvReturn)

However, in the spirit of data�ow, most function nodes implement pure functions
(that is, they do not read or a�ect the outside world). We represent them as such,
removing the occurrences of LvWorld from the signature:

applyPureFunction :: String → [Maybe LvValue]→ LvReturn

To �t the interpreter's execution model, these pure functions can then be con-
verted to match the expected signature using the following combinator, which is
able to convert the signature of applyPureFunction into that of applyFunction, by
simply forwarding the LvWorld object unchanged:

withWorld :: (a → r)→ (w → a → (w , r))
withWorld f = λw args → (w , f args)

Our goal in this interpreter is not to reproduce the functionality of LabVIEW
with respect to its domain in engineering, but to describe in detail the semantics of
the data�ow language at its core. For this reason, we include below only a small
selection of functions, which should be enough to illustrate the behavior of the
interpreter through examples.

The following pure functions are implemented: arithmetic and relational oper-
ators (Section 6.2.5.1), array functions Array Max & Min and Insert Into Array
(Section 6.2.5.2), and Bundle (a simple function which packs values into a cluster).

To demonstrate impure functions, the interpreter includes the timer function
Wait Until Next Ms (Section 6.2.5.4) and the PRNG function Random Number
(Section 6.2.5.3).

applyPureFunction name =
case name of
"+" → numOp (+) (+)
"-" → numOp (−) (−)
"*" → numOp (∗) (∗)
"/" → numOp (/) div
"<" → boolOp (<) (<)
">" → boolOp (>) (>)
"ArrayMax&Min" → returnArrayMaxMin
"InsertIntoArray"→ returnInsertIntoArray
"Bundle" → returnBundle
otherwise → error ("No rule to apply " ++ name)

CHAPTER 6. CASE STUDY: LABVIEW 104

where
returnArrayMaxMin [Just (LvArr a)] =

LvReturn (arrayMaxMin a)
returnInsertIntoArray (Just arr : Just vs : idxs) =

LvReturn [insertIntoArray arr vs (map toNumber idxs)]
where toNumber i = if isNothing i

then (−1)
else (λ(Just (LvI32 n))→ n) i

returnBundle args =
LvReturn [LvCluster (catMaybes args)]

6.2.5.1 Numeric and relational operators

LobVIEW nodes automatically perform coercions between integers and doubles.
Since ports in our implementation do not carry type information (it assumes the
input VI has been type-checked prior to execution), we pragmatically include the
coercion logic directly in the implementation for numeric and relational operator
nodes, codi�ed in the binOp function, to which the numOp and boolOp functions
below delegate.

It is worth noting that the LabVIEW UI gives visual feedback when a coercion
takes place, by adding a small circle attached to the input port. This could be con-
sidered an automatically inserted coercion node, not unlike the automatic insertion
of feedback nodes. However, since these are not separate nodes in LabVIEW (for
instance, they cannot be probed as separate objects by the LabVIEW debugging
facilities, unlike feedback nodes), we chose to not implement them as separate nodes,
so keep node structure in input programs for this interpreter more alike to that of
actual LabVIEW programs.

numOp :: (Double → Double → Double)
→ (Int → Int → Int)→ [Maybe LvValue]→ LvReturn

numOp opd opi = LvReturn ◦ return ◦ binOp opd LvDBL opi LvI32

boolOp :: (Double → Double → Bool)
→ (Int → Int → Bool)→ [Maybe LvValue]→ LvReturn

boolOp opd opi = LvReturn ◦ return ◦ binOp opd LvBool opi LvBool

binOp :: (Double → Double → t)→ (t → LvValue)
→ (Int → Int → t1)→ (t1 → LvValue)
→ [Maybe LvValue]→ LvValue

binOp opd td [Just (LvDBL a), Just (LvDBL b)] = td (opd a b)
binOp opd td [Just (LvI32 a), Just (LvDBL b)] = td (opd (fromIntegral a) b)
binOp opd td [Just (LvDBL a), Just (LvI32 b)] = td (opd a (fromIntegral b))
binOp opi ti [Just (LvI32 a), Just (LvI32 b)] = ti (opi a b)
binOp = ⊥

CHAPTER 6. CASE STUDY: LABVIEW 105

6.2.5.2 Array functions

Representing aggregate data structures and processing them e�ciently is a recog-
nized issue in data�ow languages [JHM04]. LabVIEW includes support for arrays
and clusters, and provides a large library of functions to support these data types.
We illustrate two such functions in the interpreter.

Array Max & Min is a function that takes an array and produces four output
values: the maximum value of the array, the index of this maximum value, the
minimum value of the array, and the index of this minimum value. The design of
this node re�ects one concern which appears often in the LabVIEW documentation
and among their users: avoiding excessive array copying. While languages providing
similar functionality typically provide separate functions for min and max, here the
language provides all four values at once, to dissuade the user from processing the
array multiple times in case more than one value is needed. LabVIEW also provides
a control structure called In Place Element Structure, not implemented in this
interpreter, where an array and one or more indices are entered as inputs, producing
input and output tunnels for each index, so that values can be replaced in an aggre-
gate data structure without producing copies. More recent versions of LabVIEW
avoid array copying through optimization, reducing the usefulness of this control
structure.

arrayMaxMin a =
if null a
then [LvDBL 0,LvI32 0, LvDBL 0,LvI32 0]
else [maxVal , LvI32 maxIdx ,minVal , LvI32 minIdx]

where
(maxVal ,maxIdx) = foldPair (>) a
(minVal ,minIdx) = foldPair (<) a
foldPair op l = foldl1 (λ(x , i) (y , j)→ if op x y

then (x , i)
else (y , j))

(zip l (indices l))

An example of a surprisingly large amount of functionality condensed into one
function node is LabVIEW's Insert Into Array operation. To insert into an array
x a value y , this nodes features as input ports the target array (x), the data to be
inserted (y , which may also be an array) and one indexing input port for each
dimension of x . However, only one indexing port can be connected; the other
ones must remain disconnected, and this indicates on which dimension the insertion
should take place.

The behavior of the function changes depending on which of the inputs are
connected and what are the number of dimensions of array x and data y .

Given a n-dimensional array x , value y must be either an n or (n−1)-dimensional
array (or in the case of inserting into a 1-D array, it must be either a 1-D array or
an element of the array's base type).

For example, if x is a 2D array p × q and y is a 1D array of size n, if the �rst
indexing input is connected, it inserts a new row into the matrix, producing an array
p+1×q; if the second index is connected, it inserts a new column, and the resulting

CHAPTER 6. CASE STUDY: LABVIEW 106

array size is p× q + 1. This also works in higher dimensions: for example, one can
insert a 2D matrix into a 3D array along one of its three axes.

When the dimensions are the same, the results are di�erent: inserting an array
of size m× n into an array of size p× q may produce an array of size p + m× q or
p× q +n. For all operations, the dimensions of y are cropped or expanded with null
values (such as zero or the empty string) to match the dimensions of x .

insertIntoArray :: LvValue → LvValue → [Int]→ LvValue
insertIntoArray vx vy idxs =

case (vx , vy , idxs) of
(LvArr lx , , [])→ insertIntoArray vx vy [length lx]
(LvArr lx@(LvArr x : _),LvArr ly , − 1 : is)→ recurseTo is lx (next x lx ly)
(LvArr lx@(LvArr x : _),LvArr ly , i :) → insertAt i lx (curr x lx ly)
(LvArr lx , , i :) → insertAt i lx (base vy)
where

(next , curr , base) =
if ndims vx ≡ ndims vy
then (λ lx ly → resizeCurr id lx ly ,

λ lx ly → resizeLower lx ly ,
λ(LvArr ly)→ ly)

else (λx ly → resizeCurr id x ly ,
λx ly → [LvArr (resizeAll x ly)],
λ → [vy])

insertAt i lx ly = LvArr $ take i lx ++ ly ++ drop i lx

recurseTo is lx ly = LvArr $ zipWith (λa b → insertIntoArray a b is) lx ly

resizeCurr childOp xs@(x : _) ys =
map childOp $ take (length xs) $ ys ++ (repeat ◦ zero) x
where

zero (LvArr l@(x : _)) = LvArr (replicate (length l) (zero x))
zero (LvDBL) = LvDBL 0.0
zero (LvI32) = LvI32 0
zero (LvSTR) = LvSTR ""
zero (LvBool) = LvBool False
zero (LvCluster c) = LvCluster (map zero c)
zero (LvArr []) = LvArr []

resizeLower (x : _) ys = map (childResizer x) ys

resizeAll xs@(x : _) ys = resizeCurr (childResizer x) xs ys

childResizer (LvArr x) = λ(LvArr a)→ LvArr (resizeAll x a)
childResizer = id

ndims (LvArr (v : _)) = 1 + ndims v
ndims (LvArr []) = 1
ndims = 0

CHAPTER 6. CASE STUDY: LABVIEW 107

6.2.5.3 Random Number

Random Number is an example of an impure function which produces a side-e�ect
beyond the value sent through its output port. In our de�nition of the �outside
world�, which is part of the ongoing state computed in our model, we have the state
of the pseudo-random number generator, which needs to be updated each time this
node produces a value.

In this interpreter, we implement the PRNG using the 32-bit variant of the
Xorshift algorithm [Mar03].

applyFunction "RandomNumber" w [] =
let

mask = foldl1 (λv b → v .|. bit b) (0 : [0 . . 31])
n0 = wPrng w
n1 = (n0 ‘xor ‘ (n0 ‘shiftL‘ 13)) .&. mask
n2 = (n1 ‘xor ‘ (n1 ‘shiftR‘ 17)) .&. mask
n3 = (n2 ‘xor ‘ (n2 ‘shiftL‘ 25)) .&. mask
f = abs $ (fromIntegral n3) / 2 ↑ 32

in (w {wPrng = n3 },LvReturn [LvDBL f])

6.2.5.4 Wait Until Next Ms

Node Wait Until Next Ms demonstrates both the use a value coming from the
outside world (the timestamp) and the use of a continuation. Its goal is to wait
until the timestamp matches or exceeds the next multiple of the given argument.
Using this object in loop structures that are running concurrently causes them to
iterate in lockstep, if the inserted delay is long enough. This is a simple way to
produce an acceptable level of synchronization for the typical domain of instrument
data acquisition which LabVIEW specializes on.

When the function is applied, it immediately returns a continuation, containing
the function waitUntil and the target timestamp nextMs as its argument. As we saw
in Section 6.2.4.3, this will cause the function to be rescheduled. The implementation
of waitUntil checks the current time received in the LvWorld argument: if it has
not reached the target time, the function returns another continuation rescheduling
itself; otherwise, it returns producing no value, since the function node for this
operation has no output ports. This node relies on the fact that a (sub)graph as a
whole keeps running as long as some node is scheduled.

applyFunction "WaitUntilNextMs" w [Just (LvI32 ms)] =
(w ,LvContinue $ LvKFunction waitUntil [LvI32 nextMs])
where

ts = wTs w
nextMs = ts − (ts ‘mod ‘ ms) + ms
waitUntil w@(LvWorld now) arg@[LvI32 stop]
| now > stop = (w ,LvReturn [])
| otherwise = (w ,LvContinue $ LvKFunction waitUntil arg)

CHAPTER 6. CASE STUDY: LABVIEW 108

Figure 6.7: An animation frame produced by converting the output of the inter-
preter.

applyFunction "WaitUntilNextMs" vst [Just (LvDBL msd)] =
applyFunction "WaitUntilNextMs" vst [Just (LvI32 (floor msd))]

Finally, we �nish the de�nition of applyFunction by delegating the remaining
functions to applyPureFunction.

applyFunction n w a = (withWorld ◦ applyPureFunction) n w a

6.2.6 Demonstration

In Appendix C, we demonstrate the execution of our interpreter through a few
example programs that showcase LabVIEW's various control structures. We devel-
oped a rendering pipeline to produce a visualization of the execution. Running the
interpreter prints in its output the LvV I data structure and a series of LvState
data structures, one for each execution step of the main graph. We then parse this
output using a Lua script to generate a series of .dot �les, one for each step, de-
scribing the graph alongside the state values. We then convert each .dot �le to an
image �le containing a diagram using GraphViz3 and �nally combine all frames into
a video �le using FFMPEG4. The resulting video contains an animation of the eval-
uation of the graph over time, with values moving across nodes. Figure 6.7 shows
a sample frame from one of the animations produced. All materials are available at
http://hisham.hm/thesis/.

6.3 Discussion: Is LabVIEW end-user programming?

When we discuss end-user programming, what de�nes the concept is not a particular
programming paradigm, set of constructs or UI style. End-user programming is
about the fact that the person doing the programming is the one who will use
the resulting program, and, as a secondary point, that they are not programmers
by profession. That is indeed not always the case in LabVIEW, which is used by
professional programmers who build, compile and deploy programs for other end-
users.

However, two aspects warrant its presence in the discussion on end-user program-
ming languages taking place in this work. First, although it is used as a traditional

3http://graphviz.org
4http://ffmpeg.org

http://hisham.hm/thesis/
http://graphviz.org
http://ffmpeg.org

CHAPTER 6. CASE STUDY: LABVIEW 109

programming language by software professionals, LabVIEW is also heavily used by
end-users in engineering and physics �elds, and the design of the language is heavily
informed by this fact. One might even argue that the language is better suited to
small-scale rapid end-user programming than to large-scale software development.
Second, it is a particularly interesting subject in the design space of end-user pro-
gramming because it is developed as a programming environment for writing data
acquisition programs rather than a programmable data acquisition application. This
has e�ects in the design of the resulting language. A good way to observe these ef-
fects is by contrasting LabVIEW and Pure Data.

6.3.1 LabVIEW and Pure Data compared

While both LabVIEW and Pure Data are visual data�ow languages that present
programs as graph diagrams connecting node objects, the LabVIEW environment is
a lot more similar to that of a typical programming language IDE. Beyond the visual
presentation, a fundamental di�erence is that in LabVIEW the block diagram with
the graph and front panel with the UI widgets are the �source code� of the program,
which can then be executed, presenting the UI windows which are the �program� to
be used. In Pure Data, there is no such distinction: the graph is the �document�,
which is edited in �edit mode� as the programming takes place, and which is later
manipulated in �run mode� as the music is produced. This means both applications
have two modes of operation�in LabVIEW, execution is toggled with the �play�
and �stop� buttons of the UI. However, in Pure Data there is no distinction between
what is being edited during creation and the end result; not only the interface is the
same: most importantly, the DSP engine remains running while in �edit mode�, so
a musician can transition between these two modes during a performance. Recall
that even while in �edit mode� the data�ow program is still running.

In Pure Data's �run mode�, interaction happens via manipulation of values di-
rectly in the graph nodes or by clicking nodes to trigger messages: the program
structure is transparent. While it is possible to hide the graph structure in Pure
Data through the use of subprograms and indirect messages, the environment does
not lead the user in this direction; it is more natural to present the graph, and it
helps understanding the e�ect of editing values. This visibility is common practice
in the �eld: some hardware synthesizers even include in their chassis drawings of
their high-level audio �ow diagrams, to help the musician make sense of how the
various buttons relate to each other in the overall synthesis.

When running a LabVIEW program, there is no way to a�ect the program itself
by interacting with the graph during execution. The only form of interaction allowed
is via the front panel or other attached inputs (such as hardware instruments). When
a LabVIEW program is compiled and deployed, the graph is not even visible, let
alone editable by the user. A deployed LabVIEW program, therefore, is not itself
end-user programmable.

In Pure Data, the user of the program and the developer are often the same:
a computer musician programming audio synthesis and sequencing. Even when
that is not the case�and there are communities where Pure Data programs are
shared�the explicit nature of the graph structure invites users to tweak the patches

CHAPTER 6. CASE STUDY: LABVIEW 110

to their liking, producing their own sounds.
This would lead us to conclude that Pure Data has a stronger focus on end-

users, and by catering also to a professional audience, LabVIEW would be more
di�cult for newcomers. However, by including features common to typical profes-
sional programming environments, such as a clearer distinction between types and
error messages targeting at the speci�c points of failure, LabVIEW makes it actually
easier to understand problems in the data�ow graph than Pure Data.

Language features such as (auto-generated) feedback nodes make it easier to
understand and debug cycle constructs; data coercion nodes (also auto-generated)
make explicit any precision loss�a problem that also a�ects musicians using Pure
Data, where it is perceived as degraded audio quality.

Both Pure Data and LabVIEW feature multiple types, including numbers, strings
and table objects holding aggregated data. LabVIEW has a richer set of types, and is
statically typed; Pure Data has a simpler set and is dynamically typed. Both of them
make a visual distinction among edge types in the graph: Pure Data displays audio
connections as thicker lines and message connections as thinner lines; LabVIEW uses
colors, thickness and stripe patterns to indicate the various data types it supports.
It is easy to make an invalid connection in Pure Data, for example connecting a
string outlet to a �oat inlet, which will cause a runtime error being logged. In
LabVIEW, the mismatch is caught as the user tries to make the connection; if the
data is coercible, a conversion node is automatically inserted.

Through a combination of language and environment features, LabVIEW hap-
pens to be an easier language to program for, even though engineers typically have
more formal training in programming-related �elds than musicians. Still, a large
community of musicians thrives using software such as Pure Data (and its propri-
etary relative Max/MSP) even without the facilities that professional programmers
have grown used to. This shows us that the abilities of end-users should not be
underestimated, and invites us to consider how much those end-users could bene-
�t if the languages they work on incorporated more from established programming
language design practices.

Chapter 7

Some other languages

With our extensive discussion of Pure Data (Chapter 4), spreadsheets (Chapter
5) and LabVIEW (Chapter 6), we covered a wide range of the space of design
alternatives discussed in Chapter 3. In this chapter, we extend our panorama of
data�ow languages through overviews of three more applications, which can now be
presented through the frame of reference of the languages presented earlier:

• Reaktor [Nat15] - a music application for constructing modular synthesizers;

• VEE [Agi11] - an engineering application for data acquisition and test-and-
measurement;

• Blender [Ble17] - a 3D computer graphics software.

7.1 Reaktor

Reaktor (depicted in Figure 7.1) is a commercial application by Native Instruments
for constructing synthesizers, which can be used either stand-alone or as a plugin
for di�erent music applications. Its interface has distinct Edit and Play modes. It
features separate Panel Layouts with the input and output widgets for interaction
and a Structure View with the data�ow graph for editing. Reaktor supports ab-
stracting sub-graphs into units. A program is presented as an �instrument�, which
acts as a synthesizer or an e�ects unit, often with a front-end interface that mimics
equivalent hardware.

Reaktor has two data�ow environments with distinct languages, called Primary
and Core. Instruments are created using high-level operators called �modules� which
are combined into �macros� using a data�ow language in Primary mode. The mod-
ules themselves are also written as graphs composed of �core cells�, in a distinct
environment called Core mode.

Like Pure Data, Reaktor's Primary mode has two types of wires: audio and
event wires. Further, modules may be monophonic or polyphonic. Connecting a
polyphonic module to a monophonic module �ags a type error, marking the wire in
red. A �voice combiner� module can be used to mix down a polyphonic signal into
a monophonic one. Only one wire can be connected to a port, but some modules
such as the Multiply operation are variadic, allowing more input ports to be created

111

CHAPTER 7. SOME OTHER LANGUAGES 112

Figure 7.1: A screenshot of Reaktor. Source: https://www.native-instruments.
com

as needed. The order through which audio is processed is deterministic, and the
UI has a �Module Sorting Debug Tool� option for displaying the ordering explicitly,
deemed in the manual as �crucial� in case of structures with feedback [Nat15].

When advanced users peek into the implementation of Primary modules, they
enter Core mode. While also a visual data�ow language, Core mode uses lower-level
data types, such as scalars of types float and int (including low-level concerns
such as unde�ned behavior in type conversions and denormals in IEEE 754 �oating-
point), arrays and custom structured types called �bundles� (akin to LabVIEW's
�clusters�). Memory storage in the style of shift registers are represented as special
wire types. While at �rst glance Core seems an extension of Primary, they are funda-
mentally distinct languages. For instance, their semantics for event propagation are
di�erent. In Primary, an event propagated for more than one output is forwarded to
each destination in turn. In Core, replicated events arrive logically simultaneously,
so if one output is plugged into two inputs of the same cell, a single �ring event is
produced (whereas in Primary, this would produce two events).

Reaktor notably lacks a textual scripting mode. This absence is noted even by the
music practitioner community: a major music industry magazine, Sound On Sound,
states in its review of the latest version of Reaktor that �integration of a scripting
language would help serious developers who sometimes feel the restrictions of a
purely visual-based approach�1. Still, it is interesting to note that the application
also uses a three-tier architecture, with a higher-level language in a central role and a

1http://www.soundonsound.com/reviews/native-instruments-reaktor-6

https://www.native-instruments.com
https://www.native-instruments.com
http://www.soundonsound.com/reviews/native-instruments-reaktor-6

CHAPTER 7. SOME OTHER LANGUAGES 113

Figure 7.2: Mix of data and control �ows in VEE.

lower-level language in a peripheral role, on top of the built-in application facilities.

7.2 VEE

VEE (Visual Engineering Environment) is a tool for development of engineering
test-and-measurement software, based around a visual programming language. It
was originally released by Hewlett-Packard in 1991, and is currently marketed by
Keysight Technologies [Agi11].

VEE supports integration with other languages for scripting. MATLAB inte-
gration support is included. Additionally, VBA scripting and an Excel integration
library are also supported on Windows.

There are several data types, including integer, real, complex, waveform, enum,
text, record and multidimensional arrays. Connections, however, are not typed.
Most nodes perform automatic type conversions. VEE also supports named vari-
ables, which can be used via Set Variable and Get Variable nodes, allowing for
indirect connections in the graph.

There are �ve kinds of ports for connecting wires (called pins in VEE): data
pins, which carry data; sequence pins, designed only for a�ecting the �ring sequence;
execute pins, which force an immediate execution when �red; control pins, which
a�ect the internal state of a node but do not cause data propagation; and error pins,
for error handling. Sequence pins are prominent in VEE and break the pure data�ow
model. In a comparison between LabVIEW and VEE in an engineering magazine, it
is said that �LabVIEW follows the data-�ow paradigm of programming rigorously.
HP VEE is loosely based on data-�ow diagrams with a large measure of �ow-charting
sprinkled with a little decision table.� [BHHW99]. Connected subgraphs of a disjoint
graph can be launched separately, by connecting separate �Start� buttons to the
sequence pins of input nodes of each subgraph. Data pins can connect to sequence
pins; for example, an If-Then-Else node can be used either in the data�ow way,
outputting a value according to a condition, or in the �owchart way, triggering a
subgraph. The For Count iteration node is often used in conjunction with sequence
and execute pins. Figure 7.2 illustrates the mix of data and control �ows in VEE.
Ports at the top and bottom of nodes are sequence pins; the green port is an execute
pin; other pins at the left and right are data pins. This graph has two data�ow
connections (black wires) and two control �ow connections (gray wires). The For

CHAPTER 7. SOME OTHER LANGUAGES 114

Figure 7.3: The node editor for creating materials in Blender. Source: https:
//www.blender.org

Count output data pin triggers the sequence input pin of RandomNumber ten times;
at the end of the count, the sequence output pin of For Count triggers the execute
pin of Collector, which then outputs the array to AlphaNumeric. The sequence
output pin of a node �res after the evaluation of all subgraphs connected to that
node's data outputs is complete, which may include triggering sequence pins in
nested subgraphs. A description of the intricate evaluation semantics of sequence
pins in VEE is given in [GJ98].

Through the use of various kinds of pins, VEE gives a �ne grained control of
(and responsibility for) the execution �ow to the user. The user needs to be aware
that di�erent connectors of a node have di�erent e�ects in the evaluation logic. To
an extent, this is similar to the situation in Pure Data, where hot and cold inlets
also have di�erent triggering rules.

There are two kinds of subprogram abstractions: UserObjects and UserFunc-
tions. A UserObject is merely a collapsable subgraph. To reuse it, the object needs
to be cloned, producing a new subgraph instance which can be edited separately
from the original copy. A UserFunction is a reusable subgraph, for which all uses
are references to the same instance.

7.3 Blender

Blender is an open source 3D graphics software that is used for professional ani-
mation, video games, e�ects, modeling and art. It has a large number of features,
several of which are programmable. Blender includes a data�ow language, called
in its documentation simply �node language�, that is used in di�erent parts of the

https://www.blender.org
https://www.blender.org

CHAPTER 7. SOME OTHER LANGUAGES 115

application. The documentation also mixes the presentation of the language, ex-
plaining concepts such as sockets and properties, with the presentation of the UI,
explaining menus and keyboard shortcuts.

The node editor is used as the UI for creating materials in the render engine, for
compositing and for texture editing. Figure 7.3 shows a screenshot of the materials
editor. Each of these activities has its own set of nodes available to it. A restricted
form of the node language called the "Logic Editor" is also available for integrating
3D objects with game scripting code. The remainder of this section will focus on
the more general Node Editors available for the other tasks.

Programs in the Blender node language are directed acyclic graphs. It has four
data types: color, number, vector and shader. Ports (called sockets) have di�erent
colors according to their data types. Nodes have properties, which are additional
input arguments that are "inlined" in the node (that is, it is not necessary to create
numeric nodes with constants and connect them to a node to parameterize these
arguments). For example, in Figure 7.3 node Mix has two color inputs (indicated by
yellow sockets); Color1 is connected to the previous node ColorRamp, and Color2
is set to black internally via a property.

Node Groups are collection of nodes that can be reused within a �le and through-
out di�erent �les, and the documentation describes them as "similar to functions in
programming". Recursion is not allowed. Node groups can have particular inputs
and outputs from its internal nodes that are made available to the outside, in a sim-
ilar manner to how tunnels work in LabVIEW. These tunnels are accessible when
the node group is collapsed both as sockets and as properties. Oddly, when Node
Groups made accessible to a di�erent �le (through the File . Append menu, which
appends the content of one �le to another), node groups are called "Node Trees".

Blender is scriptable in Python, and the node editor is also available to the
Python scripting layer, so plug-ins can create additional node editors for other ac-
tivities. An example of the power of this combination is the popular Animation
Nodes add-on 2, which adds a new graph-based system for controlling animations,
allowing users to specify visually tasks that previously required Python code. The
scripting interface, however, is not without its limitations. For instance, it allows
manipulating a node tree in the material editor, but not creating new node types.
The Cycles Render Engine supports creating new node types written in OSL (Open
Shading Language), for implementing texture shaders. A user then used this shader
language to create the equivalent of a Boolean if-then-else node, that was missing in
the materials editor. Another user in the same forum thread where this node was an-
nounced mentioned this node was equivalent to the "Condition" node in competing
product Maya.3

2https://github.com/JacquesLucke/animation_nodes
3https://blenderartists.org/forum/showthread.php?354949-Cycles-Boolean-Node-

(Not-Shader)

https://github.com/JacquesLucke/animation_nodes
https://blenderartists.org/forum/showthread.php?354949-Cycles-Boolean-Node-(Not-Shader)
https://blenderartists.org/forum/showthread.php?354949-Cycles-Boolean-Node-(Not-Shader)

CHAPTER 7. SOME OTHER LANGUAGES 116

7.4 Discussion: Data�ow end-user programming, then

and now

Data�ow end-user programming has come a long way since the early days of the
paradigm. Twenty-�ve years ago, most user-centric languages based on data�ow
were developed in a research context [Hil92]. Now, we were able to concentrate
our research exclusively in production languages that are in widespread use, and
we were able to select representative examples from a wider pool of options. When
looking at the world of contemporary data�ow end-user applications, it is clear that
the paradigm has established itself in certain �elds:

• Spreadsheets: Excel, LibreO�ce, Google Sheets

• Audio synthesis: Max/MSP, Pure Data, Reaktor, vvvv4, AudioMulch5

• Video compositing: Nuke6, Natron7

• 3D modeling: Maya8, Blender, Grasshopper9

• Engineering: LabVIEW, VEE, Expecco10, DASYLab11

One might speculate the reasons for the model's success in particular areas. In some
cases, it seems that a trailblazing application paved the way for the emergence of
similar applications (VisiCalc for spreadsheets, LabVIEW for engineering). In other
cases, visual languages seem to be a natural �t for professionals of certain areas,
as is the case with multimedia (video, 3D, music). It is also worth pointing out
that, looking at historical data�ow applications, their areas also tend to be similar:
music, image processing, graphics.

It is worth considering whether the paradigm could have a wider range of applica-
tion. Given that spreadsheets are used by professionals of all sorts of �elds, it seems
that the computational model is accessible to a wide range of users. In a certain
sense, a spreadsheet is a general-purpose programming language for numeric appli-
cations. Domain-speci�c applications could explore the familiarity of this model to
provide functionality tailored to di�erent areas in a programmable environment.

4https://vvvv.org/
5http://www.audiomulch.com/
6https://www.thefoundry.co.uk/products/nuke/
7http://natron.fr/
8http://www.autodesk.com/products/maya/overview
9http://www.grasshopper3d.com/
10https://www.exept.de/en/products/expecco
11http://www.mccdaq.com/DASYLab-index.aspx

https://vvvv.org/
http://www.audiomulch.com/
https://www.thefoundry.co.uk/products/nuke/
http://natron.fr/
http://www.autodesk.com/products/maya/overview
http://www.grasshopper3d.com/
https://www.exept.de/en/products/expecco
http://www.mccdaq.com/DASYLab-index.aspx

Chapter 8

Design alternatives critiqued

In this chapter, we revisit the classi�cations of design alternatives for data�ow end-
user programmable languages presented in Chapter 3, illuminated by the study
of contemporary languages of this kind presented throughout this work, and in
particular the in-depth case studies of Chapters 4 to 6. We present here a critique
of these various design choices and the impact of their inherent trade-o�s. As we
consider each of the design dimensions proposed in the survey by Hils [Hil92] and
the additional ones proposed in this work, our aim is to discuss which choices have
shown to be especially appropriate or inappropriate for di�erent scenarios. We
consider especially appropriate those choices that contribute to the usefulness of the
application within its domain. We consider inappropriate design choices those that
are related to the various pitfalls and shortcomings that we identi�ed in the design
of the various languages studied and presented in the previous chapters.

We begin by presenting in Table 8.1 an update to the table presented in [Hil92],
applying the list of design alternatives from that work (discussed in Section 3.1) to
a di�erent set of contemporary data�ow languages, while also extending it with the
additional design dimensions as presented in Section 3.2. The only language from
that survey that is also in our list is LabVIEW [Nat01]. It is worth noting that in
Hils's larger set of 15 visual data�ow programming languages the majority of them
were academic projects, many of them short-lived. In our shorter list, we restricted
ourselves to successful languages (both proprietary and open-source) with a proven
track in terms of longevity and user base.

The following sections discuss these design dimensions organized logically into
four groups. Being the focus of this work, the �rst three sections discuss semantic
aspects, namely graph evaluation, language features and type checking; the fourth
section groups the remaining aspects. Unless otherwise stated, all remarks about
Excel below apply to all spreadsheets discussed in Chapter 5.

8.1 Graph evaluation

In this section, we discuss design aspects that refer to the evaluation of the data�ow
graph as a whole. In other words, we will discuss aspects which a�ect the design
of the graph evaluator's main loop and not that of speci�c nodes. This way, we
present the discussion of semantic aspects in a top-down fashion, the same way we

117

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 118

G
en

er
a
l
in
fo
rm

a
ti
o
n

P
u
re

D
a
ta

E
x
c
e
l

L
a
b
V
IE
W

R
e
a
k
to
r

V
E
E

B
le
n
d
e
r

M
a
in

re
fe
re
n
c
e

[P
+
15
]

[N
at
01
]

[N
at
15
]

[A
gi
11
]

[B
le
17
]

L
ic
e
n
si
n
g

3-
cl
au
se

B
S
D

P
ro
p
ri
et
ar
y

P
ro
p
ri
et
ar
y

P
ro
p
ri
et
ar
y

P
ro
p
ri
et
ar
y

G
N
U
G
P
L
v
2+

In
it
ia
l
re
le
a
se

19
96

19
85

19
86

19
99

19
91

19
95

L
a
te
st
re
le
a
se

20
16

20
16

20
16

20
15

20
13

20
17

A
p
p
li
c
a
ti
o
n
d
o
m
a
in

M
u
si
c

O
�
ce

E
n
gi
n
ee
ri
n
g

M
u
si
c

E
n
gi
n
ee
ri
n
g

3D
gr
ap
h
ic
s

D
es
ig
n
a
lt
er
n
a
ti
ve
s
[H
il
92
]

P
u
re

D
a
ta

E
x
c
e
l

L
a
b
V
IE
W

R
e
a
k
to
r

V
E
E

B
le
n
d
e
r

B
o
x
-l
in
e
re
p
re
se
n
ta
ti
o
n

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

It
e
ra
ti
o
n

Y
es

(c
y
cl
es
)

L
im
it
ed

Y
es

(c
on
st
ru
ct
)

L
im
it
ed

Y
es

N
o

S
u
b
p
ro
g
ra
m

a
b
st
ra
c
ti
o
n

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

S
e
le
c
to
r/
d
is
tr
ib
u
to
r

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

F
lo
w
o
f
d
a
ta

U
n
i

U
n
i

U
n
i

U
n
i

U
n
i

U
n
i

S
e
q
u
e
n
c
e
c
o
n
st
ru
c
t

N
o

N
o

Y
es

N
o

Y
es

N
o

T
y
p
e
ch
e
ck
in
g

L
im
it
ed

N
o

Y
es

Y
es

N
o

Y
es

H
ig
h
e
r-
o
rd
e
r
fu
n
c
ti
o
n
s

N
o

N
o

N
o

N
o

N
o

N
o

E
x
e
c
u
ti
o
n
m
o
d
e

D
at
a-
d
ri
ve
n

D
em

an
d
-d
ri
ve
n

D
at
a-
d
ri
ve
n

D
em

an
d
-d
ri
ve
n

D
at
a-
d
ri
ve
n

D
at
a-
d
ri
ve
n

L
iv
e
n
e
ss
le
v
e
l
[T
an
90
]

2
3

2
2

2
3

A
d
d
it
io
n
a
l
d
es
ig
n
a
lt
er
n
a
ti
ve
s

P
u
re

D
a
ta

E
x
c
e
l

L
a
b
V
IE
W

R
e
a
k
to
r

V
E
E

B
le
n
d
e
r

D
a
ta
�
o
w
m
o
d
e
l

D
y
n
am

ic
S
ta
ti
c

S
ta
ti
c

S
ta
ti
c

S
ta
ti
c

S
ta
ti
c

N
-t
o
-1

in
p
u
ts

Y
es

N
o

N
o

N
o

N
o

N
o

S
e
p
a
ra
te

e
d
it
/
u
se

v
ie
w
s

N
o

N
o

Y
es

Y
es

Y
es

N
o

T
im
e
-d
e
p
e
n
d
e
n
t
�
ri
n
g

Y
es

N
o

Y
es

Y
es

Y
es

N
o

R
a
te
-b
a
se
d
e
v
a
lu
a
ti
o
n

S
y
n
ch
ro
n
ou
s

N
o

N
o

S
y
n
ch
ro
n
ou
s

N
o

N
o

In
d
ir
e
c
t
c
o
n
n
e
c
ti
o
n
s

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

D
y
n
a
m
ic
c
o
n
n
e
c
ti
o
n
s

Y
es

Y
es

Y
es

N
o

N
o

N
o

T
e
x
tu
a
l
su
b
-l
a
n
g
u
a
g
e

Im
p
er
at
iv
e

F
u
n
ct
io
n
al

Im
p
er
at
iv
e

N
o

Im
p
er
at
iv
e

N
o

S
c
ri
p
ti
n
g

P
y
th
on
,
L
u
a

V
B
A

M
A
T
L
A
B

R
ea
k
to
r
C
or
e

M
A
T
L
A
B

O
S
L
,
P
y
th
on

T
ab
le
8.
1:

A
co
m
p
ar
is
on

of
co
n
te
m
p
or
ar
y
d
at
a�
ow

U
I-
le
ve
l
la
n
gu
ag
es

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 119

presented the interpreters in previous chapters.

8.1.1 Static and dynamic data�ow models

When creating a data�ow-based system, the �rst design decision to make with regard
to the language is which data�ow model to use; in other words, which criteria will
be used for �ring nodes. Given that the essence of data�ow is purely functional,
any order of evaluation (and thus any sequence of �rings) should produce identical
results. However, since real-world programs are usually not purely functional and
include visible e�ects, the underlying data�ow model can become apparent to the
end-user: for example, in a static model, a fast operation can be held back by a
slow operation further ahead in the pipeline, due to the lack of queueing. Dynamic
data�ow models avoid these bottlenecks, but their more complicated models present
di�erent trade-o�s [Den85, KSP15], some of which become apparent in the resulting
language. Of the languages compared in this work, only Pure Data employs a
dynamic model. A side-e�ect of this model is that ordering issues arise. As discussed
in Section 4.3, we believe these issues were not addressed appropriately.

Another side of this trade-o� which favors static and synchronous data�ow mod-
els is that understanding and debugging a data�ow graph is easier when there is
a single token per arc (or a �xed number of values, as in the case of synchronous
data�ow), and only one iteration of a loop is running at a time. For end-user
programming, understandability is more important than parallel e�ciency, so it is
our view that end-user data�ow languages should present a static data�ow view
of program execution. When the language contains explicit looping constructs, it
should be possible to achieve a dynamic �ow of execution in certain loops as a user-
transparent optimization, if the contents of a loop are known to be purely functional,
for example. Such an optimization could then be automatically disabled when the
user is probing the �ow of tokens for debugging purposes, restoring a one-token-per-
wire view.

8.1.2 Data-driven and demand-driven data�ow

In the classic literature on the data�ow paradigm, the data-driven and demand-
driven models are presented as equally proeminent, complementary approaches
[TBH82]. Yet in the context of end-user programming, we identify a tendency
towards data-driven execution, considering not only the six languages selected here,
but also the ones that were preliminarily studied to perform the selection.

We believe this is understandable because the data-driven approach more directly
maps to the mental model one has about the evaluation of a graph, with the order of
execution matching the way the data �ows from input nodes toward output nodes.

Only two languages in this study employ demand-driven evaluation: Excel and
Reaktor. Demand-driven evaluation is natural in a spreadsheet because cells are
written as textual expressions, which translate to an expression tree that is eval-
uated top-down, that is, starting from the output node. The fact that Excel is
demand-driven is mostly transparent, because of its static data�ow model, its lack
of time-dependent �ring and purely functional nature (with no imperative textual

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 120

sub-language). Beyond the basic intuition about expression trees, one way to verify
that a spreadsheet is indeed demand-driven is by forcing side-e�ects via the script-
ing layer of the application, and con�rming that these only happen when cells are
scrolled into view. We con�rmed this successfully in all spreadsheets analyzed1.

The case of Reaktor is a good illustration of how demand-driven execution can
be a poor choice for end-user applications. Although not stated explicitly in its doc-
umentation and indistinguishable in most cases, the evaluation of Reaktor's Primary
mode is demand-driven. This can be inferred from the fact that graphs that do not
connect to an audio output need to have their terminal nodes marked as �always
active� in order to trigger continuous evaluation. In one tutorial from the vendor,
the documentation instructs to add a dummy �lamp� output marked as always-on
just to achieve this same e�ect2. What should have been a transparent optimization
ends up demanding additional actions in the user work�ow.

8.1.3 Uni and bi-directional data�ow

All languages studied in this work employ the traditional uni-directional style of
data�ow. In Hils's work, only one language featured bi-directional �ow of data:
Fabrik [IWC+88], a language for designing user interfaces.

Bi-directional constraint systems have been present in research for end-user de-
velopment systems since the early days of Sketchpad [Sut63] and the paradigm
continues to be researched for this day [Sch17], but what we observe in industry
practice is that the simpler uni-directional model has become established as the
norm in data�ow. GUI construction systems (notably the same domain as Fabrik)
have taken up bi-directional constraint systems [Jam14], with Cassowary [BBS01]
being integrated into Apple's standard GUI libraries, but those are used as an in-
ternal component and not as end-user programming languages of their own.

8.1.4 N-to-1 inputs

Another decision in the design of the evaluation model for a data�ow language is
whether it will support multiple wires connecting to a single input port in a node,
or �N-to-1 inputs� for short, or if all input ports can only take at most one wire
(�1-to-1 inputs�). Supporting N-to-1 inputs involves determining how to handle the
arrival of multiple data tokens into a single port.

Pure Data is the only language in our study that supports N-to-1 inputs. The
way it handles these inputs is deeply linked to its data�ow evaluation model. For
audio wires, which use a static and synchronous model, the incoming data is merged
using additive synthesis (that is, the input argument for the port is a bu�er where
each sample value is the sum of the sample values at the corresponding positions
from the incoming wire bu�ers). For message wires, which use a dynamic model, it
queues inputs, causing multiple incoming inputs arriving to a single port through

1The JavaScript-based scripting layer of Google Sheets tries to prevent side-e�ects (we could
not make it pop up a message box as we did in the other applications), but we still veri�ed the
demand-driven execution by writing a computation-intensive script that caused a noticeable delay.

2https://support.native-instruments.com/hc/en-us/articles/209588249-How-to-

Use-an-Event-Table-as-Copy-Buffer-in-REAKTOR-5

https://support.native-instruments.com/hc/en-us/articles/209588249-How-to-Use-an-Event-Table-as-Copy-Buffer-in-REAKTOR-5
https://support.native-instruments.com/hc/en-us/articles/209588249-How-to-Use-an-Event-Table-as-Copy-Buffer-in-REAKTOR-5

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 121

di�erent wires to �re the node multiple times. Queueing also leads to concerns with
ordering, as discussed in Section 4.3.

It seems clear that disallowing N-to-1 inputs leads to a simpler conceptual model
and less suprising behavior. Not all domains have an obvious choice on what to do
when merging inputs (and even in Pure Data's domain of audio processing, some
synthesizers use subtractive synthesis, for example) so having an explicit merge node
is a clearer why of presenting what is happening with the data. The convenience that
N-to-1 inputs bring could be obtained by automatically inserting those nodes when
multiple wires are plugged to an input port, similarly to how LabVIEW auto-inserts
feedback nodes.

8.1.5 Timing considerations

When considering issues of timing, let us look at both time-dependent �ring and rate-
based evaluation at once. We see in Table 8.1 three distinct patterns. We have two
languages that support time-dependent �ring and use a synchronous data�ow model
for rate-based evaluation: Pure Data and Reaktor; two languages that support time-
dependent �ring but do not feature rate-based evaluation (that is, using a purely
static model): LabVIEW and VEE; and two languages that do not have either:
Excel and Blender.

The approach of these languages with regard to timing is linked to their domains
and to the kind of data and activity they perform. Pure Data and Reaktor, both
of them music applications, operate on audio streams. Processing digital audio in
real-time requires rate-based evaluation, and music creation demands the ability to
specify transformations of data based on time. LabVIEW and VEE, engineering
applications, require supporting activities such as periodic reading and writing of
data, but since they don't have a single domain-speci�c target for these processing
rates which can be made fully implicit in the evaluation loop, as it happens, for
example, with music applications, processing bu�ers at standard rates such as �48000
Hz 24-bit stereo� (48000×3×2 = 288000 bytes per second). Since sampling rates of
various data acquisition instruments supported by those engineering tools vary, the
user needs to essentially construct the rate-processing loop by hand, using arrays and
delay objects. Both LabVIEW and VEE de�ne �waveform� types as abstractions to
help in this task, but those are no more than a �typedef� of a record type, storing
an array and a timestamp.

Languages whose domains do not deal with time avoid time-based evaluation
features entirely: Excel and Blender have no support for them (except for the oc-
casional Excel function like TODAY(), but that is clearly not integrated with the
language's evaluation model�for one, the cell value does not update automatically
as time passes).

Another issue related to timing that is often a concern in language design is
synchronization. In end-user applications, timing constraints depend on the domain.
In the �eld of music, for example, timing precision matters up to the scale of human-
perceptible audio latency, which is in the order of a few hundredths of a second. This
means that synchronization can be often satisfactorily approximated via real-time
clock events. As we saw in the case of LabVIEW, timing primitives with millisecond

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 122

precision are used to cause iterations of parallel loops to proceed in tandem. When
a language combines two evaluation models, as is the case of Pure Data, which
uses dynamic data�ow for messages and synchronous data�ow for audio, it is also
important to avoid synchronization issues. Pure Data solves this adequately by
alternating message and audio evaluation while using an audio bu�er to give the
evaluation of the message cascades enough time to run. This can still lead to audio
drop-outs if message processing is excessive, but musicians nowadays are used to the
notion that heavy computations can make audio stutter, known in the community
jargon as �audio dropouts�, and adapt accordingly.

8.1.6 Indirect and dynamic connections

As discussed in Section 3.2.5, while the presence of indirect connections is a syn-
tactic feature, the occurrence of connections determined at runtime has semantic
consequences. Dynamic connections make it impossible to determine a static sched-
ule for node evaluation in advance (as is done for audio nodes in Pure Data, for
example), to optimize in-place replacement of bu�ers to avoid array copying (since
any intermediate node may be �red at any time) and to reliably detect loops in
advance.

Pure Data, Excel and LabVIEW support dynamic connections. As should be no
surprise by now, Pure Data supports dynamic connections only for message data,
not audio. An indirect connection, dynamic or not, consists of two nodes, a sender
and a receiver. In Pure Data, only the sender node can have its target dynamically
de�ned; the identi�er of a receiver node cannot be changed at runtime.

Of the three languages that support dynamic connections, Pure Data presents
them as a basic feature of the language; Excel and LabVIEW treat them as ad-
vanced features, in the form of Excel's INDIRECT function and LabVIEW's object
reference system. This may be related to the fact that, given that Pure Data al-
ready employs a dynamic data�ow model, these dynamic connections behave like
any other connection. In static data�ow systems like Excel and LabVIEW, the use
of dynamic connections can cause issues. It is easy to �nd on the internet examples
of user problems with dynamic connections in both Excel3 and LabVIEW4.

8.2 Language features

We now move to the second part of the discussion on semantic aspects. Here, we
discuss the design of speci�c nodes and features that may or may not be present in

3�No #REF! error, the cell just doesnt update with the new value (just stays exactly the same),
even though the reference is correct and the referenced cell is obviously updated� �I actually
tried rebooting, didnt help.� https://www.wallstreetoasis.com/forums/excel-help-cells-

do-not-update-when-they-reference-another-excel-file
4Typing � labview object reference� in Google auto-suggests � labview object reference is invalid �.

In one of the results, the LabVIEW knowledge base reports �This is a documented known issue that
occurs in LabVIEW Real-Time versions 2014 and 2015. After making a modi�cation to the VI,
Error 1055 is thrown from any property node attempting to access the dynamic refnum. In order
to resolve this error, close and re-open the VI.� (http://digital.ni.com/public.nsf/allkb/
2E848F065A18570986257F3800708328).

https://www.wallstreetoasis.com/forums/excel-help-cells-do-not-update-when-they-reference-another-excel-file
https://www.wallstreetoasis.com/forums/excel-help-cells-do-not-update-when-they-reference-another-excel-file
http://digital.ni.com/public.nsf/allkb/2E848F065A18570986257F3800708328
http://digital.ni.com/public.nsf/allkb/2E848F065A18570986257F3800708328

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 123

Figure 8.1: Loop contexts in Naiad [MMI+13], featuring a very similar structure to
that of Show and Tell and LabVIEW

a data�ow language.

8.2.1 Selector/distributor

Selector and distributor nodes are the most basic features in a data�ow language.
Unsurprisingly, all languages studied here implement them and there is not much
design variation among them. For more complex data types, such as images in
Blender and audio in Pure Data and Reaktor, a selector σ(k, v1, v2) can work like a
�mixer� node, in which k is a blend value between 0 and 1 instead of a boolean.

8.2.2 Iteration

In stark contrast with selectors and distributors, iteration constructs are the ones
that show the greatest amount of variation in design among data�ow languages,
leading even to a survey speci�cally about it [MP00]. And indeed, no two languages
among those presented in this work implement iteration the same way. We consider
here iteration in a broad sense of the word, de�ning it as any language feature that
allows evaluating a subgraph a number of times.

Pure Data, being a dynamic data�ow language, allows for cycles, and this is a
simple way of producing iteration. Evidently, cycles are only allowed in the dynamic
part of the language, that is, between message-handling nodes. Cycles between audio
nodes are detected and rejected as soon as the DSP engine is activated.

In Excel, array formulas may be considered a limited form of iteration, since
they allow evaluating multiple times for a given range of values a single expression
tree. Some array formula patterns combining common functions were turned into
prede�ned functions which always evaluate their arguments in an array context, like
SUMPRODUCT and SUMIF5.

LabVIEW features structured constructs for looping, based on the idea of a frame
around a subgraph, with values �owing between iterations through shift registers.
The design of this construct is essentially the same as that of Hierarchical Data
Flow introduced in Show and Tell [Kim85, KCM86]. More recently, this model of
structured loops in static data�ow graphs has been reinvented in Naiad [MMI+13], a

5Excel users invented an idiom to produce the equivalent of the miss-
ing function SUMPRODUCTIF without resorting to array formulas: the expression
SUMPRODUCT(--(C1:C10="flag"),A1:A10,B1:B10)) uses double negation to coerce boolean
values into 0 or 1, annulling elements of the product when the condition does not match.

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 124

Figure 8.2: A graph containing two occurrences of a subgraph S

modern distributed system for Big Data processing, which advertises static data�ow
with structured loops as one of its main features. Figure 8.1, from [MMI+13],
illustrates the similarities: nodes I and E work like LabVIEW tunnels, and node
F works like a shift register, with the di�erence that Naiad employs a tagged-token
system to allow for parallel iterations.

Reaktor has no iteration structure per se, but it features a node called "Iteration"
which acts as a counter, producing a series of values that can be used for �ring
other subgraphs and indexing values. VEE has a similar iteration node to Reaktor,
but because of its support for sequence pins that dictate control �ow, it is a more
powerful construct for triggering arbitrary subgraphs. VEE also performs an implicit
map operation when passing an array to a function that expects a scalar, similarly
to Excel's array context. Finally, Blender notably lacks an iteration construct.

8.2.3 Sequence construct

A sequence construct is a way to specify that one subgraph should execute after
another, without having a data dependency between them (akin to sequencing two
statements s1; s2 in textual programming languages). As such, it is a fundamentally
imperative construct.

The only languages from our survey to include explicit sequencing constructs are
LabVIEW and VEE. Given that they are both engineering applications and are the
only ones to feature constructs clearly named after their textual-language counter-
parts such as �for� and �while�, we speculate that explicit sequencing was added to
ease the transition from users who had some previous programming experience.

It is interesting to note that all the other applications do not have sequencing
constructs. This seems to indicate that for domain specialists without preconceived
notions about programming, imperative constructs are not a necessity and declara-
tive programming can be used successfully.

8.2.4 Subprogram abstractions

The ability to abstract away subprograms is a commonplace feature in modern
programming languages. In the data�ow model, a subprogram abstraction means
replacing a subgraph with a node that represents it. In graphical languages, this
feature becomes especially necessary to tame the visual clutter of the graph repre-
sentation.

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 125

In end-user programming languages, and especially visual ones, abstractions
present semantic complications that are usually missing in languages for professional
programmers. A typical motivation for abstracting a subgraph is to reuse it. In the
example of Figure 8.2, subgraph S appears twice in the main diagram. Expanding
both occurences of S, one would �nd the same subgraph with nodes X, Y and Z.
When copying a node representing an abstracted subgraph for reuse, end-users have
di�erent intuitions whether these two nodes are references to the same subgraph
or if they are two separate copies that can be modi�ed without a�ecting the other
one. Translating to the world of textual languages, this is the question whether an
abstraction behaves as a newly-declarated function used in two places, or if it is
merely a visual (syntactic) abbreviation, akin to those achieved by code-folding text
editors.

Moreover, when end-users perceive an abstraction as a single subgraph referenced
in two di�erent places, then there is the question as to whether they perceive the
subgraph as reentrant: in other words, whether they see the two invocations of the
subgraph as fully independent executions (that is, like usual function calls where
each invocation has its own activation record), or if they see the shared subgraph
as a single entity in memory. In case of stateful nodes, this is especially relevant,
because that determines if multiple invocations of the abstraction in the main graph
a�ect each other or not (which would be equivalent, for example, to declaring all
local variables in a C function as being static or not).

Note that these two issues of copying and reentrancy are related: copies naturally
have no reentrancy problems. We have therefore three possible behaviors:

1. copying a subgraph produces a new, unrelated subgraph with identical con-
tents;

2. copying a subgraph produces a new reference to the same subgraph, but each
reference produces a new instance in memory at runtime;

3. copying a subgraph produces a new reference to the same subgraph, which has
a single instance in memory at runtime.

Figure 8.3 illustrates the e�ect of editing the graph from Figure 8.2 under these
di�erent behaviors. Consider that the user expands the right-hand occurrence of S
and changes Z to W . In the �rst scenario, editing the second occurrence of S does
not a�ect the �rst (Figure 8.3(a1)), and their executions will also be independent
(Figure 8.3(a2)). In the second scenario, all references point to the same subgraph
(Figure 8.3(b1)), but the execution of each instance is independent (Figure 8.3(b2)).
In the third scenario, there is a single copy of S, both in the diagram (note that Fig-
ure 8.3(c1) is identical to Figure 8.3(b1)) and in memory (Figure 8.3(b1)), meaning
that the execution is not re-entrant.

Seasoned programmers used to textual languages will expect the behavior of
scenario 2, with a single representation of a function in the program and separate
instances in memory as it executes, which is the best one in terms of code reuse and
safe execution. Note, however, that of the three scenarios depicted in Figure 8.3,
this is the only one where the visual presentation when editing the program does
not represent the behavior in memory.

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 126

separate subgraph same subgraph
separate at runtime same at runtime

af
te
r
ed
it
in
g

(a1) (b1) (c1)

at
ru
n
ti
m
e

(a2) (b2) (c2)

Figure 8.3: Di�erent alternatives for the behavior of subprograms

Di�erent applications approach these issues in di�erent ways. Pure Data has two
ways of representing subprograms: �subpatches�, which behave according to scenario
1, and are stored as part of the same �le as the main graph, and �abstractions�,
which are stored as separate graph �les, and behave according to scenario 2. A
problem arises, though, when saving abstractions. Pure Data persists the internal
state of graphs when saving them, so when a patch contains multiple instances of
an abstraction, the internal state of only one of them is saved. Users are advised
to make the initialization of their abstractions stateless through the use of creation
arguments, but they still look for workarounds to save their state.6

In LabVIEW, sub-VIs are not reentrant by default [Nat13]. There is a single
instance in memory, as in scenario 3 above. Note that this leads e�ectively to a
situation with N-to-1 wires leading to input ports, even though LabVIEW does not
allow it otherwise. This breaks LabVIEW's static data�ow model and introduces
queueing. The user can enable reentrancy, producing one instance in memory per
reference, changing its behavior to scenario 2. Sub-VIs cannot be recursive. Each
instance remains in memory even when not running, to save the state of shift regis-
ters and feedback nodes. There is also a third setting, in which LabVIEW creates a
pool of instances as a way to reduce memory usage, but in this case sub-VIs become
stateless.

A Node Group in Blender shows in its collapsed box a number that represents the

6http://forum.pdpatchrepo.info/topic/8803/state-saving-abstractions/14

http://forum.pdpatchrepo.info/topic/8803/state-saving-abstractions/14

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 127

number of �linked� instances. When a Node Group is copied, this number increments
in all instances to denote that the same Node Group is being used in multiple places.
The user can turn an instance into an independent copy by clicking this number.

8.2.5 Higher-order functions

None of the languages presented here include support for de�ning higher-order func-
tions. In fact, the only languages with support for user-de�ned higher-order func-
tions in Hils's original survey are all either general-purpose programming languages
(outside of the scope of this work) or Hils's own DataVis [Hil91], a research language
for scienti�c visualization. In [FPK93], higher-order functions for data�ow visual
languages are again discussed only in the context of general-purpose languages.

It is unsurprising that successful end-user programmable applications lack higher-
order functions: those applications feature languages tailored for their speci�c do-
mains, and a language is most e�ective when it is designed to work in terms of
objects of its intended domain [Wes15]. Domain specialists think in terms of objects
of their domain: numbers in a spreadsheet represent monetary values, a matrix in
a graphics editor represents an image. Functions as �rst-class objects are a rei�-
cation of programs. First-order functions represent programs that are operations
on objects of the domain: a function transpose : Score×Key → Score represents
the work of transposing a musical score into another key (e.g. from C] to B[), and
as such it is an activity within the specialist's domain. Higher-order functions are
one step removed from the domain in terms of abstraction: they are programs that
are operations on other programs. The addition of higher-order functions to the
set of �rst-class values, thus, makes the universe of discourse7 strictly larger, and
the added objects are familiar (and of interest) to computing professionals, not to
domain specialists. An argument of the same nature could be made in the opposite
direction of the abstraction ladder, to explain the absence of low-level access to bits
and bytes.

8.3 Type checking

This work has not focused much on type checking issues, since the type systems of
all languages studied are very simple. In at least one case, the type system of a
language was deliberately simpli�ed by the language designers, with the restriction
on recursive data types in LabVIEW. Still, there are interesting observations to be
made about type checking in data�ow end-user applications.

We de�ne type checking in the context of data�ow as a veri�cation provided
by the environment, prior to execution, that the types of values expected by an
input port matches the types of values produced by an output port connected to
it. In the case of an environment with liveness level 2, this means that the system
reports a type mismatch before entering the "use" mode. In the case of a respon-
sive environment (i.e. one with liveness level 3), we expect the system to �ag a

7in Boole's original sense [Boo54]

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 128

type incompatibility immediately as the user attempts to add an invalid connection,
disallowing the creation of the wire in the �rst place.

LabVIEW performs type checking, and the various data types supported are
visually identi�ed through colors in nodes and wires. When a user draws incorrect
wires those remain in the diagram marked as such and running the program is not
possible. As explained in Chapter 6, LabVIEW's inference system for tunnel direc-
tions can cause previously correct wires to become �agged as incorrect, sometimes
with wide-ranging and confusing results, and unhelpful error messages. The well-
intentioned convenience provided by the inference system has proved to be, in our
opinion, inappropriate for an end-user programming system.

Pure Data o�ers limited type checking, in the sense that the interface provides
a clear separation between message and audio data, di�erentiating both nodes and
wires of these two kinds and disallowing mismatching connections, but type mis-
matches between various message data types are not checked. In various senses,
Pure Data works almost like two languages in one, with its single-typed synchronous
model for audio �ow on one side, and a dynamically-typed dynamic data�ow model
for message passing on the other.

Both Blender and Reaktor provide visual hints about the types of their input and
output ports, and only allow connecting wires between ports of compatible types.
Type errors are impossible.

Excel and VEE are dynamically typed: type errors are reported only at runtime.
Since Excel is a responsive application and connections between cells are given by
the user textually, there is no way for the language to prevent type errors in the
manner of Blender and Reaktor. However, one could conceive of a statically-typed
spreadsheet that, in the event of cell errors, instead of merely producing an error
value for the whole formula8, produced an error message indicating which term of
the expression caused the type error, as modern compilers do.

There are other interesting issues related to types on which we did not focus in
this work. E�cient handling of data structures and strategies to avoid excessive
copying of data between nodes are matters of concern [FP15, FBH16], especially in
less restricted evaluation models.

8.4 Other aspects

Finally, we discuss other aspects with primarily syntactic or pragmatic impact. Since
these a�ect the design of the language as a whole, choices made one way or another
in these aspects may in�uence other choices in the semantic aspects discussed above.

8.4.1 Liveness, representation and modes

All languages from this study score either 2 or 3 in Tanimoto's liveness scale [Tan90].
Recalling the meaning of each level, we have that in level 2 the visual representation
is the executable program, and that in level 3 the visual representation is responsive:
editing the visual representation triggers updates to the evaluation of the program.

8Not to mention that such errors in dynamically-typed spreadsheets are subject to often-
arbitrary error propagation semantics as we have seen in Chapter 5.

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 129

Level 2 is therefore a syntactic feature: all visual languages �t this criterion. All
languages presented in this work apart from the spreadsheets use box-line graph
representations, but the (semantically signi�cant!) spatial layout of a spreadsheet
is also a visual representation of the program.

Level 3 refers to the lack of separate �edit� and �use� modes. Depending on the
the language, a responsive loop may have a semantic impact or not: if a spreadsheet
was made non-responsive, with explicit �edit� and �use� modes, that would only
mean that recalculations would have to be triggered explicitly by a �Run� button
(which would brie�y send the program into �use� mode and back). E�ectively, our
interpreter from Chapter 5 would be unchanged. For a program with long-running
loops, however, adding a responsive interface would bring new questions about the
language behavior: what would happen in a responsive version of LabVIEW if
graphs could gain or lose nodes and wires as the program runs? Our interpreter
from Chapter 6 would be very di�erent.

None of the programs we analyzed implements liveness at Tanimoto's level 4, in
which the program is �responsive and live� in the sense that results update continu-
ally as the program is edited beyond merely reacting to the user's edits. Pure Data
does continue to produce audio if the user switches from �use� back to �edit� mode,
but the sets of actions allowed in each mode are disjoint. So, in that sense, it does
not qualify for level 3 in terms of inputs but it reaches level 4 in terms of outputs.
That may in fact indicate a shortcoming in Tanimoto's classi�cation method.

A more useful observation may be that the applications that attain level 3 of
liveness, Excel and Blender, share some important traits in their semantics that
make their responsiveness possible: they combine static data�ow with the absence
of time-dependent �rings and no side-e�ecting nodes. This allows both applications
to re-evaluate subgraphs as needed and present the user an instant update each time
they make an edit.

8.4.2 Textual sub-language and scripting

There are two distinct aspects with regard to integration with textual languages.
The �rst aspect is what we call a textual sub-language, which is a textual part of the
UI-level language. As such, it is a uniquely syntactic distinction: the interpreters in
Chapters 4 and 5 implement their textual parts as AST nodes that are intertwined
with the program representation as a whole. The second aspect is the integration
of a scripting language in the application, re�ecting the architecture described in
Chapter 2.

The textual sub-languages of Excel and Pure Data are at the forefront of their
respective applications, and they are central to their data�ow languages as the
data�ow languages are central to the UI as a whole. In line with the three-layer
architecture, both applications allow for more advanced scripting as well. Excel,
as part of the Microsoft O�ce family, integrates with Visual Basic for Applica-
tions. The vanilla package of Pure Data does not ship with a scripting engine by
default, but it is extensible through plug-ins and there are extensions available that
add Python and Lua scripting, the latter being available from the main Pure Data
community site and included by default in some distributions of the application.

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 130

Max/MSP is also extensible with a number of options of scripting language plugins,
including Python, Lua, Ruby and JavaScript.

Reaktor and Blender are the only two languages to lack a textual sub-language.
Blender integrates with textual languages at the scripting language level, but Reak-
tor presents its scripting layer as a second graphical language. It is notable how, in
spite of avoiding textual languages, the design of Reaktor evolved to the same three-
layer structure described in 2.1.2: Reaktor Core was introduced in 2005, adding more
powerful, lower-level programming capabilities to the application. In many aspects,
the semantics of the higher-level Reaktor Primary language resemble those of Pure
Data, and the semantics of the lower-level Reaktor Core resemble those of LabVIEW
(further fueling the discussion introduced in Section 6.3.1).

LabVIEW has a somewhat blurred boundary between its textual sub-language
and its scripting capabilities: it o�ers a gradient of options, starting from a functional
�expression node� in which a single-variable mathematical expression can be entered
textually; a �formula node� in which small imperative programs can be written in
a safe subset of C, accessing data only via the node's input and output ports; a
�script node� which accepts MathScript, a subset of MATLAB; and a �MATLAB
node�, which connects to an external MATLAB instance for execution. The latter
two nodes allow for side-e�ects.

8.5 Discussion: An architectural pattern for end-

user programmable applications

The architecture of today's end-user programmable applications is typically an ex-
tension of that of scriptable applications (Figure 8.4(a)), adding an ad hoc end-user
language accessible via the application's interface (Figure 8.4(b)). To move past ad
hoc end-user languages and get us closer to the situation we have in the scripting
world, it is necessary to take into account the fact that these languages need to be
fully customized to their domain.

An approach that has been used successfully in the world of scripting is to create
a library of domain-speci�c components of top of a reusable language such that this
collection of components becomes e�ectively an �embedded DSL� over the scripting
language core. A similar approach could be conceived for end-user programming
languages, allowing an application designer to produce a DSL on top of a reusable
component implementing the language evaluation core (Figure 8.4(c)). For this to
happen, the implementation of data�ow languages needs to become reusable. One
possibility in this direction is the development of a data�ow engine, exposing to the
application developer building blocks based on well-understood design alternatives,
such as those discussed in this chapter. The development of the UI-level layer would
become then an integration process, similar to what currently happens with scripting
languages.

One concern when exposing the functionality of an application as two di�er-
ent languages is a possible discontinuity in the abstractions provided (termed the
semiotic continuum principle in [dSBdS01]), so that the scripting layer contains
functionality that is unrepresentable in the UI, or vice-versa. Note that this kind

CHAPTER 8. DESIGN ALTERNATIVES CRITIQUED 131

(a) Scriptable application (b) Scriptable end-user

programmable application

(c) UI-level DSL provided by a

data�ow engine

(d) UI-level and scripting languages

with shared bindings

Figure 8.4: Architectural patterns of programmable applications

of discontinuity can happen between any two layers of abstraction. As a practi-
cal example, our previous work developing a translator of Lua 5.0 to C based on
the Lua/C API9 uncovered some shortcomings in said API. What that work did
was to attempt to perform a projection of the language into its API, producing a
de�nition of the semantics of Lua 5.0 programs in terms of its Lua/C API, using
pure C exclusively for representing control �ow. The fact that the resulting trans-
lator had to produce strings of Lua code for some operations meant that not all
aspects of the language were readily interoperable through the API. The Lua/C
API was subsequently amended in Lua 5.1, allowing for a full projection without
string evaluation.

Making sure that the di�erent layers of a programmable application project
correctly onto each other can be challenging, especially when the languages at each
level and their binding APIs evolve in parallel. The possibility for API discontinuities
are greater when there are di�erent paths towards the application core (as in Figures
8.4(b) and 8.4(c)). A way to ensure this consistency between the end-user UI-level
language and the scripting language would be to share the application bindings, thus
providing a single path to the application core (Figure 8.4(d)). There are interesting
possibilities of how to achieve this, such as compatible lower-level APIs or using the
scripting language to implement the data�ow engine.

9https://github.com/hishamhm/luatoc

https://github.com/hishamhm/luatoc

Chapter 9

Conclusion

End-user languages for UI interaction are today in the state where scripting lan-
guages were in the 1980s: they are custom ad hoc languages, with their implemen-
tation often mixed with that of the application itself, and their design re�ecting
an organic evolution. In the world of scripting, this has since been replaced by
out-of-the-box implementations of widely used languages, reused among many ap-
plications, with their design re�ecting an evolution towards suitability for multiple
domains. Most importantly, this notion of a �scriptable application� composed by
a low-level core and a scripting language extended with bindings to this core has
become a common architectural pattern [Ous98].

We aimed to bring a similar evolution to end-user UI-level languages one step
closer to reality. In earlier drafts of this work, our initial goal was to map the
design space of data�ow end-user languages, identify the various design options,
and from there construct a reusable language in which these various options were
provided as building blocks, so that an application developer could construct the
UI-level language for their application by combining these blocks at will. However,
providing application writers with a toolkit of language building blocks could save
them considerable development e�ort, but the resulting languages could still be
subject to the same feature interaction problems we discussed throughout this work.
As we developed our research, we realized that we needed to step back and perform
a deeper analysis of the design space instead. Not only is it important to know what
the choices are, but it is fundamental to understand the e�ects of these choices.

Our work, thus, made the following primary contributions, each one leading
logically to the next:

Mapping the design space of data�ow end-user language semantics. The
apparent simplicity of visual diagrams embedded in application interfaces is
deceiving. A number of design decisions go into building a data�ow UI-level
language. Much of the earlier research work on this class of languages went
into studying its visual aspects. Here, we focused on the semantic aspects of
those languages, lifting the veil on their underlying complexity.

A critique of design alternatives for data�ow end-user languages. This map
of the design space proved to be appropriate as a conceptual framework to
compare languages of this kind e�ciently. We applied this classi�cation into a

132

CHAPTER 9. CONCLUSION 133

group of successful end-user applications, allowing us to discuss the e�ects of
each of the mapped design dimensions based on actual practice. This allowed
us to verify which design choices worked best and which ones caused problems.

Identifying interdependencies in data�ow design choices. Our study concluded
that many of the dimensions identi�ed in the design space for this class of lan-
guages are dependent on each other. The evaluation provided in Chapter 8
showed that many languages were only able to pick one choice over another in
certain design aspects because of their choices in other aspects. This stresses
the importance of understanding these design aspects as a whole, at the risk
of having one choice bringing unexpected consequences later in the design. It
also con�rms that a sound design cannot be achieved by merely combining
building blocks at will.

In the course of this work, we also made the following secondary contributions:

A speci�cation of realistic spreadsheet semantics. The existing literature on
spreadsheets to this day has always restricted itself to simpli�ed models of their
semantics [Tys13, AE06, AAGK03, AHH15], ignoring the variations across
di�erent implementations. The major omissions in o�cial speci�cation doc-
uments [ISO12, OAS11] and the incompatibilities between implementations
from the same vendor suggest that these languages are not understood in
detail at all. In this work we provide what we believe to be the most compre-
hensive formal speci�cation of a realistic spreadsheet semantics so far.

Executable models of Pure Data and LabVIEW. In a similar vein, both Pure
Data and LabVIEW are relevant languages that have been studied in academia,
not only within their respective domains but also by the programming language
community [BJ13, BH15, MS98, KKR09]. None of these languages had any
kind of speci�cation, and this work provides the �rst realistic models of their
core semantics, addressing their unique features.

Insights on multi-language application architecture. Throughout this work,
we made some observations on language and application architecture that we
believe to be novel in the literature: the concept of roles of end-user program-
ming languages, with the distiction between central and peripheral end-user
languages (Section 2.1.1); identifying Nardi's three pro�les of users with the
presence of a three-layer architecture in successful end-user programmable ap-
plications (Section 2.1.2); the e�ects of API bindings and architectural alterna-
tives to ensure proper language projections in multi-language designs (Section
8.5).

All in all, this work provided a better understanding of the state of data�ow lan-
guages in the context of end-user programming, with a view towards the advance-
ment of this �eld. We believe that the evolution of scripting languages hints at a
possible path for the evolution of UI-level languages. Scripting languages evolved
from initially ad hoc shell and con�guration languages, as these started to make
use of the lessons learned by earlier high-level programming languages. We believe

CHAPTER 9. CONCLUSION 134

UI-level languages will follow the same path, adopting lessons from decades of re-
search in data�ow. In our view, reusable UI-level data�ow languages will eventually
become a reality, provided that the application architecture is considered as a whole
and the design constraints are well-understood. This in itself is an exciting avenue
for future work.

Bibliography

[AAGK03] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi. A type
system for statically detecting spreadsheet errors, pages 174�183. 10
2003.

[AE06] Robin Abraham and Martin Erwig. Type inference for spreadsheets.
In Proceedings of the 8th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming, PPDP '06, pages
73�84, New York, NY, USA, 2006. ACM.

[Agi11] Agilent Technologies. VEE 9.3 User's Guide, 2011.

[AHH15] E. Aivaloglou, D. Hoepelman, and F. Hermans. A grammar for spread-
sheet formulas evaluated on two large datasets. In Source Code Analy-
sis and Manipulation (SCAM), 2015 IEEE 15th International Working
Conference on, pages 121�130, Sept 2015.

[AS94] Arnon Avron and Nada Sasson. Stability, sequentiality and demand
driven evaluation in data�ow. Formal Aspects of Computing, 6(6):620�
642, 1994.

[ASS96] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure
and Interpretation of Computer Programs. MIT Press, Cambridge,
MA, USA, 2nd edition, 1996.

[AW77] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language
with iteration. Commun. ACM, 20(7):519�526, jul 1977.

[BB01] B. Bhattacharya and S.S. Bhattacharyya. Parameterized data�ow mod-
eling for dsp systems. Trans. Sig. Proc., 49(10):2408�2421, October
2001.

[BBS01] Greg J. Badros, Alan Borning, and Peter J. Stuckey. The cassowary
linear arithmetic constraint solving algorithm. ACM Trans. Comput.-
Hum. Interact., 8(4):267�306, dec 2001.

[BELP95] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-
static data �ow. In 1995 International Conference on Acoustics, Speech,
and Signal Processing, volume 5, pages 3255�3258 vol.5, May 1995.

[Ben86] Jon Bentley. Programming pearls: Little languages. Commun. ACM,
29(8):711�721, aug 1986.

135

BIBLIOGRAPHY 136

[BGB14] Daniel W. Barowy, Dimitar Gochev, and Emery D. Berger. Checkcell:
Data debugging for spreadsheets. In Proceedings of the 2014 ACM In-
ternational Conference on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA '14, pages 507�523, New York, NY,
USA, 2014. ACM.

[BH15] Gregory Burlet and Abram Hindle. An empirical study of end-user
programmers in the computer music community. In Proceedings of the
12th Working Conference on Mining Software Repositories, MSR '15,
pages 292�302, Piscataway, NJ, USA, 2015. IEEE Press.

[BHHW99] Ed Baroth, Chris Hartsough, Amy Holst, and George Wells. Evaluation
of LabVIEW 5.0 and HP VEE 5.0 - Part 2. EE, Evaluation Engineering,
38(5):5, may 1999.

[BJ13] Karim Barkati and Pierre Jouvelot. Synchronous programming in audio
processing: A lookup table oscillator case study. ACM Comput. Surv.,
46(2):24:1�24:35, dec 2013.

[Ble17] Blender Foundation. Blender, 2017.

[Boo54] George Boole. An investigation of the laws of thought, on which are
founded the mathematical theories of logic and probabilities, chapter 3,
page 30. Project Gutenberg EBook #15114 (2005), 1854.

[BS14] Margaret M. Burnett and Christopher Sca�di. The Encyclopedia of
Human-Computer Interaction, 2nd Ed., chapter End-User Develop-
ment. The Interaction Design Foundation, Aarhus, Denmark, 2014.

[Buc93] Joseph Tobin Buck. Scheduling Dynamic Data�ow Graphs with
Bounded Memory Using the Token Flow Model. PhD thesis, 1993.
AAI9431898.

[CFR06] Je�rey Carver, Marc Fisher, II, and Gregg Rothermel. An empirical
evaluation of a testing and debugging methodology for excel. In Pro-
ceedings of the 2006 ACM/IEEE International Symposium on Empir-
ical Software Engineering, ISESE '06, pages 278�287, New York, NY,
USA, 2006. ACM.

[CSV09] Jácome Cunha, João Saraiva, and Joost Visser. From spreadsheets
to relational databases and back. In Proceedings of the 2009 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM '09, pages 179�188, New York, NY, USA, 2009. ACM.

[Den85] Jack B. Dennis. Models of data �ow computation. In Manfred Broy,
editor, Control Flow and Data Flow - Concepts of Distributed Program-
ming, Berlin Heidelberg, 1985. Springer.

[DFR14] Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. Reactive
imperative programming with data�ow constraints. ACM Trans. Pro-
gram. Lang. Syst., 37(1):3:1�3:53, nov 2014.

BIBLIOGRAPHY 137

[DJS11] Sebastian Draxler, Adrian Jung, and Gunnar Stevens. Managing soft-
ware portfolios: a comparative study. In End-User Development, pages
337�342. Springer, 2011.

[DOK+87] D. Dougherty, T. O'Reilly, S.G. Kochan, P.H. Wood, and O'Reilly &
Associates. UNIX Text Processing. Hayden Books UNIX library sys-
tem. Hayden Books, 1987.

[dSBdS01] C.S de Souza, S.D.J Barbosa, and S.R.P da Silva. Semiotic engineering
principles for evaluating end-user programming environments. Inter-
acting with Computers, 13(4):467 � 495, 2001.

[FBH16] Vincent Foley-Bourgon and Laurie Hendren. E�ciently implementing
the copy semantics of matlab's arrays in javascript. In Proceedings of
the 12th Symposium on Dynamic Languages, DLS 2016, pages 72�83,
New York, NY, USA, 2016. ACM.

[FP15] Bruno Ferreira and Fernando Quintão Pereira. The Dinamica virtual
machine for geosciences. In Brazilian Symposium on Programming Lan-
guages - SBLP, 2015.

[FPK93] Alex Fukunaga, Wolfgang Pree, and Takayuki Dan Kimura. Functions
as objects in a data �ow based visual language. In Proceedings of the
1993 ACM Conference on Computer Science, CSC '93, pages 215�220,
New York, NY, USA, 1993. ACM.

[FZHT13] Joachim Falk, Christian Zebelein, Christian Haubelt, and Jürgen Teich.
A rule-based quasi-static scheduling approach for static islands in dy-
namic data�ow graphs. ACM Trans. Embed. Comput. Syst., 12(3):74:1�
74:31, April 2013.

[GJ98] Steven Greenbaum and Stanley Je�erson. A compiler for HP VEE.
Hewlett-Packard Journal, 49(2):98�122, may 1998.

[GKHB09] Nicolas Gold, Jens Krinke, Mark Harman, and David Binkley. Clone
detection for max/msp patch libraries (poster abstract). In Digital
Music Research Network Workshop, 2009.

[GKHB11] Nicolas Gold, Jens Krinke, Mark Harman, and David Binkley. Cloning
in Max/MSP patches. In Proceedings of International Computer Music
Conference 2011, pages 159�162, Hudders�eld, UK, July 2011. Inter-
national Computer Music Association.

[GKM+11] L. Gantel, A. Khiar, B. Miramond, A. Benkhelifa, F. Lemonnier, and
L. Kessal. Data�ow programming model for recon�gurable comput-
ing. In Recon�gurable Communication-centric Systems-on-Chip (Re-
CoSoC), 2011 6th International Workshop on, pages 1�8, June 2011.

[GS11] Gagan Gupta and Gurindar S. Sohi. Data�ow execution of sequential
imperative programs on multicore architectures. In Proceedings of the

BIBLIOGRAPHY 138

44th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-44, pages 59�70, New York, NY, USA, 2011. ACM.

[Has96] Haskell Wiki. Wadler's Law. https://wiki.haskell.org/Wadler's_
Law, 1996.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data �ow programming language lustre. Proceedings of the IEEE,
79(9):1305�1320, Sep 1991.

[Hil91] Daniel D. Hils. DataVis: A visual programming language for scienti�c
visualization. In Proceedings of the 19th Annual Conference on Com-
puter Science, CSC '91, pages 439�448, New York, NY, USA, 1991.
ACM.

[Hil92] Daniel D. Hils. Visual languages and computing survey: Data �ow
visual programming languages. Journal of Visual Languages & Com-
puting, 3:69�101, 1992.

[HL15] Ralf Hinze and Andres Löh. Guide to lhs2 (for version
1.19). https://hackage.haskell.org/package/lhs2tex-1.19/src/
doc/Guide2.pdf, apr 2015.

[ISO12] ISO. ISO/IEC 29500-1:2012 � O�ce Open XML File Formats, 2012.

[IWC+88] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken
Doyle. Fabrik: A visual programming environment. In Conference
Proceedings on Object-oriented Programming Systems, Languages and
Applications, OOPSLA '88, pages 176�190, New York, NY, USA, 1988.
ACM.

[Jam14] Noreen Jamil. Constraint solvers for user interface layout. arXiv
preprint arXiv:1401.1031, jan 2014.

[JBB03] Simon Peyton Jones, Alan Blackwell, and Margaret Burnett. A user-
centred approach to functions in Excel. In In ICFP '03: Proceedings
of the eighth ACM SIGPLAN international conference on Functional
programming, pages 165�176. ACM Press, 2003.

[JHM04] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Ad-
vances in data�ow programming languages. ACM Comput. Surv.,
36(1):1�34, mar 2004.

[Jon05] Brian Jones. Comments from Tim Bray on OpenDocument.
http://blogs.msdn.com/b/brian_jones/archive/2005/10/04/
477127.aspx, oct 2005.

[KCM86] Takayuki Dan Kimura, Julie W. Choi, and Jane M. Mack. A visual
language for keyboardless programming. Technical Report WUCS-86-
06, Washington University, St. Louis, jun 1986.

https://wiki.haskell.org/Wadler's_Law
https://wiki.haskell.org/Wadler's_Law
https://hackage.haskell.org/package/lhs2tex-1.19/src/doc/Guide2.pdf
https://hackage.haskell.org/package/lhs2tex-1.19/src/doc/Guide2.pdf
http://blogs.msdn.com/b/brian_jones/archive/2005/10/04/477127.aspx
http://blogs.msdn.com/b/brian_jones/archive/2005/10/04/477127.aspx

BIBLIOGRAPHY 139

[Kim85] Takayuki Dan Kimura. Hierarchical data�ow model: A computation
model for small children. Technical Report WUCS-85-05, Washington
University, St. Louis, may 1985.

[KKR09] Matt Kaufmann, Jacob Kornerup, and Mark Reitblatt. Formal veri�-
cation of LabVIEW programs using the ACL2 theorem prover. In 8th
International Workshop on the ACL2 Theorem Prover and Its Appli-
cations, ACL2 '09, pages 82�89, New York, NY, USA, 2009. ACM.

[Kos73] Paul R. Kosinski. A data �ow language for operating systems program-
ming. SIGPLAN Not., 8(9):89�94, jan 1973.

[KSP15] Krishna Kavi, Charles Shelor, and Domenico Pace. Concurrency, syn-
chronization, and speculation�the data�ow way. Advances in Comput-
ers, 96:47�104, 2015.

[LCM+08] Yuan Lin, Yoonseo Choi, S. Mahlke, T. Mudge, and C. Chakrabarti.
A parameterized data�ow language extension for embedded streaming
systems. In Embedded Computer Systems: Architectures, Modeling, and
Simulation, 2008. SAMOS 2008. International Conference on, pages
10�17, July 2008.

[LHML08] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. Co-
scripter: Automating & sharing how-to knowledge in the enterprise. In
Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI '08, pages 1719�1728, New York, NY, USA, 2008.
ACM.

[LM87] E. A. Lee and D. G. Messerschmitt. Synchronous data �ow. Proceedings
of the IEEE, 75(9):1235�1245, Sept 1987.

[Mac90] Wendy E. Mackay. Patterns of sharing customizable software. In Pro-
ceedings of the 1990 ACM Conference on Computer-supported Coop-
erative Work, CSCW '90, pages 209�221, New York, NY, USA, 1990.
ACM.

[Mar03] George Marsaglia. Xorshift rngs. Journal of Statistical Software, 8(1):1�
6, 2003.

[McI98] David McIntirye. Comp.lang.visual - frequently-asked questions list,
mar 1998.

[MCLM90] Allan MacLean, Kathleen Carter, Lennart Lövstrand, and Thomas
Moran. User-tailorable systems: Pressing the issues with buttons. In
Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI '90, pages 175�182, New York, NY, USA, 1990. ACM.

[Mic14] Microsoft. Microsoft by the numbers. https://news.microsoft.com/
bythenumbers/ms_numbers.pdf, 2014.

https://news.microsoft.com/bythenumbers/ms_numbers.pdf
https://news.microsoft.com/bythenumbers/ms_numbers.pdf

BIBLIOGRAPHY 140

[Mic16] Microsoft. Guidelines and examples of array formulas.
https://support.office.com/en-us/article/Guidelines-
and-examples-of-array-formulas-3BE0C791-3F89-4644-A062-
8E6E9ECEE523, 2016.

[MMI+13] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. Naiad: A timely data�ow system. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP '13, pages 439�455, New York, NY, USA, 2013. ACM.

[MP00] M. Mosconi and M. Porta. Iteration constructs in data-�ow visual
programming languages. Comput. Lang., 26(2-4):67�104, July 2000.

[MS98] A.K. Mok and D. Stuart. An rtl semantics for labview. In Aerospace
Conference, 1998 IEEE, volume 4, pages 61�71 vol.4, Mar 1998.

[MSH92] Brad A Myers, David Can�eld Smith, and Bruce Horn. Report of the
"End-User Programming" working group. In Brad A. Myers, editor,
Languages for developing user interfaces, chapter 19, pages 343�366.
AK Peters, Ltd., 1992.

[MTdS13] Ingrid Teixeira Monteiro, Eduardo Tiomno Tolmasquim, and
Clarisse Sieckenius de Souza. Going back and forth in metacommunica-
tion threads. In 12th Brazilian Symposium on Human Factors in Com-
puting Systems, IHC '13, pages 102�111, Porto Alegre, Brazil, Brazil,
2013. SBC.

[Nar93] Bonnie A. Nardi. A Small Matter of Programming: Perspectives on
End User Computing. MIT press, 1993.

[Nat01] National Instruments. Getting Started With LabVIEW. National In-
struments, Austin, Texas, 321527e-01 edition, nov 2001.

[Nat13] National Instruments. Reentrancy: Allowing simultaneous calls to the
same SubVI. LabVIEW 2013 Help, jun 2013.

[Nat15] Native Instruments. REAKTOR 6 - Building in Primary. Berlin, Ger-
many, 6.0.1 edition, nov 2015.

[NM91] B. A. Nardi and J. R. Miller. Computer-supported cooperative work
and groupware. chapter Twinkling Lights and Nested Loops: Dis-
tributed Problem Solving and Spreadsheet Development, pages 29�54.
Academic Press Ltd., London, UK, UK, 1991.

[OAS06] OASIS. OpenFormula Format for O�ce Applications (OpenFormula) -
Rough Draft. https://www.oasis-open.org/committees/download.
php/16826/openformula-spec-20060221.html, 02 2006.

https://support.office.com/en-us/article/Guidelines-and-examples-of-array-formulas-3BE0C791-3F89-4644-A062-8E6E9ECEE523
https://support.office.com/en-us/article/Guidelines-and-examples-of-array-formulas-3BE0C791-3F89-4644-A062-8E6E9ECEE523
https://support.office.com/en-us/article/Guidelines-and-examples-of-array-formulas-3BE0C791-3F89-4644-A062-8E6E9ECEE523
https://www.oasis-open.org/committees/download.php/16826/openformula-spec-20060221.html
https://www.oasis-open.org/committees/download.php/16826/openformula-spec-20060221.html

BIBLIOGRAPHY 141

[OAS11] OASIS. Open Document Format for O�ce Applications (Open-
Document) Version 1.2 - Part 2: Recalculated Formula (Open-
Formula) Format. http://docs.oasis-open.org/office/v1.2/os/
OpenDocument-v1.2-os-part2.html, 9 2011.

[Ous98] John K. Ousterhout. Scripting: Higher-level programming for the 21st
century. Computer, 31(3):23�30, mar 1998.

[P+15] Miller Puckette et al. Pd documentation. http://msp.ucsd.edu/Pd_
documentation/index.html, 2015.

[Phi13] Dusty Phillips. Dead batteries included. O'Reilly Radar, October 2013.

[Rey72] John C. Reynolds. De�nitional interpreters for higher-order program-
ming languages. In Proceedings of the ACM Annual Conference - Vol-
ume 2, ACM '72, pages 717�740, New York, NY, USA, 1972. ACM.

[Sch17] Toby Schachman. Apparatus: a hybrid graphics editor and program-
ming environment for creating interactive diagrams, 2017.

[SFG+15] Tobias Schwarzer, Joachim Falk, Michael Glaÿ, Jürgen Teich, Christian
Zebelein, and Christian Haubelt. Throughput-optimizing compilation
of data�ow applications for multi-cores using quasi-static scheduling. In
Proceedings of the 18th International Workshop on Software and Com-
pilers for Embedded Systems, SCOPES '15, pages 68�75, New York,
NY, USA, 2015. ACM.

[SMFBB93] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan
Borning. Multi-way versus one-way constraints in user interfaces: Ex-
perience with the deltablue algorithm. Softw. Pract. Exper., 23(5):529�
566, may 1993.

[SR12] Marton Sakal and Lazar Rakovic. Errors in building and using elec-
tronic tables: Financial consequences and minimisation techniques.
International Journal on Strategic Management and Decision Support
Systems in Strategic Management, 17(3):29�35, 2012.

[SSM05] Christopher Sca�di, Mary Shaw, and Brad Myers. Estimating the
numbers of end users and end user programmers. In Proceedings of
the 2005 IEEE Symposium on Visual Languages and Human-Centric
Computing, VLHCC '05, pages 207�214, Washington, DC, USA, 2005.
IEEE Computer Society.

[Sut63] Ivan Edward Sutherland. Sketchpad, a man-machine graphical commu-
nication system. PhD thesis, Massachusetts Institute of Technology,
jan 1963.

[Tan90] S. L. Tanimoto. VIVA: a visual language for image processing. Journal
of Visual Languages and Computing, 1:127�139, 1990.

http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os-part2.html
http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os-part2.html
http://msp.ucsd.edu/Pd_documentation/index.html
http://msp.ucsd.edu/Pd_documentation/index.html

BIBLIOGRAPHY 142

[TBH82] Philip C. Treleaven, David R. Brownbridge, and Richard P. Hopkins.
Data-driven and demand-driven computer architecture. ACM Comput-
ing Surveys, 14(1):93�143, March 1982.

[Tra05] Laurence Tratt. The importance of syntax. http://tratt.net/
laurie/blog/entries/the_importance_of_syntax.html, may 2005.

[Tys10] Jerzy Tyszkiewicz. Spreadsheet as a relational database engine. In
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD '10, pages 195�206, New York, NY,
USA, 2010. ACM.

[Tys13] J. Tyszkiewicz. The Power of Spreadsheet Computations. ArXiv e-
prints, jul 2013.

[Wes15] David M. West. The cuban software revolution: 2016-2025. In 2015
ACM International Symposium on New Ideas, New Paradigms, and
Re�ections on Programming and Software (Onward!), Onward! 2015,
pages 267�281, New York, NY, USA, 2015. ACM.

[Wip10] Matthieu Wipliez. Compilation infrastructure for data�ow programs.
PhD thesis, INSA de Rennes, 2010.

[WP94] Paul G. Whiting and Robert S. V. Pascoe. A history of data-�ow
languages. IEEE Ann. Hist. Comput., 16(4):38�59, dec 1994.

[Zmö14] Iohannes M. Zmölnig. How to write an external for Pure Data. http:
//iem.at/pd/externals-HOWTO/, March 2014.

http://tratt.net/laurie/blog/entries/the_importance_of_syntax.html
http://tratt.net/laurie/blog/entries/the_importance_of_syntax.html
http://iem.at/pd/externals-HOWTO/
http://iem.at/pd/externals-HOWTO/

Appendix A

Demonstration of the interpreter

modeling Pure Data

To wrap up the presentation of the interpreter modeling Pure Data, we present a
demonstration of its use. We build a simple synthesizer with both frequency and
amplitude controllable via events, and use it to play the motif from the main theme
of the �lm �Back To The Future�, composed by Alan Silvestri.

First, we de�ne a few constants corresponding to the frequency in Hertz of some
musical notes:

cSharp = 554.37
aSharp = 932.33
g = 783.99
gSharp = 830.61
f = 698.46

Then, we construct the patch that corresponds to the following graph:

example = PdPatch (fromList [
PdAtomBox (PdFloat 0), -- 0
PdObj [PdSymbol "osc~",PdFloat gSharp] 2 1, -- 1
PdMsgBox [PdCmd PdToOutlet (floatList [0.5, 1000])], -- 2

143

APPENDIX A. PURE DATA INTERPRETER 144

PdMsgBox [PdCmd PdToOutlet (floatList [0, 100])], -- 3
PdObj [PdSymbol "line~"] 2 1, -- 4
PdObj [PdSymbol "*~"] 2 1, -- 5
PdObj [PdSymbol "dac~"] 1 0, -- 6

PdObj [PdSymbol "receive",PdSymbol "MyMetro"] 0 1, -- 7
PdObj [PdSymbol "metro",PdFloat 500] 2 1, -- 8
PdObj [PdSymbol "delay",PdFloat 5] 2 1, -- 9
PdObj [PdSymbol "list",PdFloat 0.5,PdFloat 0.1] 2 1, -- 10
PdObj [PdSymbol "list",PdFloat 0,PdFloat 500] 2 1, -- 11
PdObj [PdSymbol "line~"] 1 1, -- 12
PdObj [PdSymbol "osc~",PdFloat (gSharp / 2)] 1 1, -- 13
PdObj [PdSymbol "*~"] 2 1, -- 14

PdMsgBox [PdCmd PdToOutlet
[PdTAtom (PdSymbol "list"),PdTAtom (PdSymbol "bang")]], -- 15

PdMsgBox [PdCmd PdToOutlet
[PdTAtom (PdSymbol "list"),PdTAtom (PdSymbol "stop")]], -- 16

PdMsgBox [PdCmd (PdReceiver "MyMetro") [PdTDollar 1]]] -- 17

)(fromList [
((0, 0) B (1, 0)), ((1, 0) B (5, 0)), ((2, 0) B (4, 0)),
((3, 0) B (4, 0)), ((4, 0) B (5, 1)), ((5, 0) B (6, 0)),
((7, 0) B (8, 0)), ((8, 0) B (9, 0)), ((8, 0) B (10, 0)),
((9, 0) B (11, 0)), ((10, 0) B (12, 0)), ((11, 0) B (12, 0)),
((12, 0) B (14, 0)), ((13, 0) B (14, 1)), ((14, 0) B (6, 0)),
((15, 0) B (17, 0)), ((16, 0) B (17, 0))]

)[1, 4, 5, 12, 13, 14, 6]
where

floatList = map (PdTAtom ◦ PdFloat)

This is the sequence of input events that corresponds to playing the tune:

main :: IO ()
main =

ByteString .putStr $ runPut (putWav output)
where
output = genOutput $ runSteps 10000 example [

(PdEvent 1000 15 [PdSymbol "bang"]), -- MyMetro bang
(PdEvent 1010 2 [PdSymbol "bang"]), -- 0.1 1000
(PdEvent 1900 3 [PdSymbol "bang"]), -- 0 100
(PdEvent 2001 0 [PdSymbol "float",PdFloat cSharp]),
(PdEvent 2002 2 [PdSymbol "bang"]), -- 0.1 1000

(PdEvent 2900 3 [PdSymbol "bang"]), -- 0 100
(PdEvent 3001 0 [PdSymbol "float",PdFloat g]),
(PdEvent 3002 2 [PdSymbol "bang"]), -- 0.1 1000

(PdEvent 4660 3 [PdSymbol "bang"]), -- 0 100
(PdEvent 4749 2 [PdSymbol "bang"]), -- 0.1 1000

(PdEvent 4750 0 [PdSymbol "float",PdFloat gSharp]),

APPENDIX A. PURE DATA INTERPRETER 145

(PdEvent 4875 0 [PdSymbol "float",PdFloat aSharp]),
(PdEvent 5000 0 [PdSymbol "float",PdFloat gSharp]),

(PdEvent 5333 0 [PdSymbol "float",PdFloat f]),

(PdEvent 5666 0 [PdSymbol "float",PdFloat cSharp]),

(PdEvent 6000 0 [PdSymbol "float",PdFloat g]),

(PdEvent 6650 3 [PdSymbol "bang"]), -- 0 100
(PdEvent 6745 2 [PdSymbol "bang"]), -- 0.1 1000

(PdEvent 6750 0 [PdSymbol "float",PdFloat gSharp]),
(PdEvent 6875 0 [PdSymbol "float",PdFloat aSharp]),
(PdEvent 7000 0 [PdSymbol "float",PdFloat gSharp]),

(PdEvent 7000 16 [PdSymbol "bang"]), -- MyMetro stop

(PdEvent 8000 3 [PdSymbol "bang"])] -- 0 100

In Pure Data, the sound card is represented by the dac~ object. Our interpreter
does not handle actual audio output natively, but we can extract the inlet data from
that node from the list of states, and convert it to an audio wav �le format, which
is then sent to standard output.

convertData :: PdNodeState → [Integer]
convertData (PdNodeState ins) =

let inlet = index ins 0
in map (λ(PdFloat f)→ floor (f ∗ 32768)) inlet

everyOther :: [a]→ [a]
everyOther (x : (y : xs)) = x : everyOther xs
everyOther x = x

genOutput x = concat $ everyOther
$ toList
$ fmap (λ(PdState nss)→ convertData $ index nss 6) x

putWav vs =
let

riff = 0 x46464952
wave = 0 x45564157
fmts = 0 x20746d66
datx = 0 x61746164
formatHeaderLen = 16
fileSize = (44 + (length vs) ∗ 2)
bitsPerSample = 16
format = 1
channels = 1
sampleRate = 32000

in do
putWord32le riff
putWord32le (fromIntegral fileSize)
putWord32le wave
putWord32le fmts

APPENDIX A. PURE DATA INTERPRETER 146

putWord32le formatHeaderLen
putWord16le format
putWord16le channels
putWord32le sampleRate
putWord32le (sampleRate ∗ bitsPerSample ∗ (fromIntegral channels) ‘div ‘ 8)
putWord16le (((fromIntegral bitsPerSample) ∗ channels) ‘div ‘ 8)
putWord16le (fromIntegral bitsPerSample)
putWord32le datx
putWord32le (fromIntegral ((length vs) ∗ 2))
mapM_ (putWord16le ◦ fromIntegral) vs

Appendix B

Demonstration of the spreadsheet

interpreter

We present here a demonstration of the spreadsheet interpreter in use. This ap-
pendix is a Literate Haskell program including the complete source code of the
demonstration.

This program imports the interpreter de�ned in Chapter 5 as a module, as well as
some standard modules from the Haskell Platform. We also use one additional mod-
ule for tabular pretty-printing of the output: Text.PrettyPrint.Boxes, available
from Hackage, the Haskell community's package repository1.

import XlInterpreter
import Data.Char (chr , ord)
import Data.Map.Strict as Map (foldlWithKey , empty , lookup, toList , (!))
import Text .PrettyPrint .Boxes as Box (render , hcat , vcat , text)
import Text .PrettyPrint .Boxes as Alignment (left , right)

Running the program produces the following output:

|A |B |C |D |E |F |G

1| 15| 15|"B" | 75| 30| 105| 1015

2| 30| 15| 1| | | |

3| | | | | | |

4| | | | | | |

5| | |"#VALUE!"| 115| | 15|

6| | | | 130| | 16|

7| | | | | | |

8| | | | | | |"#VALUE!"

9| | | | | | |

10| 10| | | 10| -20| 30|

11|"10" | | | | 20| |

12|False |"#DIV/0!"| | | | |

13|True |"#VALUE!"| | | | |

14|True |"#DIV/0!"| | | | |

1https://hackage.haskell.org/package/boxes

147

https://hackage.haskell.org/package/boxes

APPENDIX B. SPREADSHEET INTERPRETER 148

B.1 Formatting

In order to produce a more readable output, we de�ne the instance Show for our
XlState type, using the Text .PrettyPrint package to produce tabular outputs.

instance Show XlState where
show (XlState cells values) =
"\nCells:\n" ++ listCells ++
"\nValues:\n" ++ tableValues ++
"\n" ++ show values ++ "\n"
where

rmax = Map.foldlWithKey (λmx L〈r〉, M → max r mx) 0 values
cmax = Map.foldlWithKey (λmx L , 〈c〉M → max c mx) 0 values
listCells = Box .render

$ Box .vcat Alignment .left
$ map Box .text
$ map show (Map.toList cells)

tableValues = Box .render
$ Box .hcat Alignment .left
$ numsCol : map doCol [0 . . cmax]

numsCol = Box .vcat Alignment .right
$ map Box .text
$ " " : map show [1 . . (rmax + 1)]

doCol c = Box .vcat Alignment .left
$ Box .text ['|', chr (c + 65)] :

map (λs → Box .text ('|' : doRow s c)) [0 . . rmax]
lpad m xs = reverse $ take m $ reverse

$ (take m $ repeat ' ') ++ (take m xs)
doRow r c = case Map.lookup (L〈r〉, 〈c〉M) values of

Just (XlNumber n)→ lpad 9 (num2str n)
Just v → show v
Nothing → ""

B.2 A test driver

We construct below a test driver function that runs test cases and compares their
results to expected values.

runTest :: String → [(XlEvent ,XlValue)]→ IO ()
runTest name operations =

let
env@(XlState cells values) = runEvents (XlWorksheet Map.empty)

(map fst operations)
value :: String → XlValue
value a1 = values ! (toRC a1)

failures = filter (λv → v 6≡ Nothing) $ map doCheck operations

APPENDIX B. SPREADSHEET INTERPRETER 149

where
doCheck (op, value) =

case op of
XlSetFormula rc fml →

if values ! rc ≡ value
then Nothing
else Just (rc, value)

XlSetArrayFormula rcfrom rcto fml →
if values ! rcfrom ≡ value
then Nothing else
Just (rcfrom, value)

in do
putStrLn ""
print name
print env
if null failures
then putStrLn "OK! :-D"
else

do
putStrLn "Failed: "
print failures

We employ a few shortcuts to write down formulas more tersely:

str s = XlString s
num n = XlNumber n
err e = XlError e
boo b = XlBool b
lnum n = XlLit (XlNumber n)
lstr s = XlLit (XlString s)
lmtx mx = XlLit (XlMatrix (map (map XlNumber) mx))
lmtxs mx = XlLit (XlMatrix (map (map XlString) mx))
fun f args = XlFun f args
ref a1 = XlRef (toRC a1)
range a1 b2 = XlRng (toRC a1) (toRC b2)
toRC (l : num) = L〈((read num)− 1)〉, 〈((ord l)− 65)〉M
addF rc f v = (XlSetFormula (toRC rc) f , v)
addAF rcfrom rcto f v = (XlSetArrayFormula (toRC rcfrom) (toRC rcto) f , v)
sumSqrt l = num $ foldr (+) 0 (map sqrt l)

B.3 The example spreadsheet

We then run the main program, using runTest to create a spreadsheet, taking a list
of input events as a parameter. In this list, addF and addAF are events adding
formulas and array formulas to cells. The last argument is the expected value. All
tests here produce the indicated values.

APPENDIX B. SPREADSHEET INTERPRETER 150

main :: IO ()
main =

do
runTest "Example" [

addF "A1" (lnum 15) (num 15),
addF "B1" (lnum 0) (num 15),
addF "A2" (fun "+" [ref "A1", ref "B1"]) (num 30),
addF "B1" (ref "A1") (num 15),
addF "C1" (lstr "B") (str "B"),
addF "C2" (lnum 1) (num 1),
addF "B2" (fun "INDIRECT" [fun "&" [ref "C1", ref "C2"]]) (num 15),
addF "D1" (fun "SUM" [range "A1" "B2"]) (num 75),
addF "E1" (fun "SUM" [range "B1" "B2"]) (num 30),
addF "F1" (fun "SUM" [range "D1" "E1"]) (num 105),

addF "D10" (lnum 10) (num 10),
addF "E10" (lnum (−20)) (num (−20)),
addF "F10" (lnum 30) (num 30),
addF "E11" (fun "ABS" [range "D10" "F10"]) (num 20),
addF "G8" (fun "ABS" [range "D10" "F10"]) (err "#VALUE!"),

addF "A10" (lnum 10) (num 10),
addF "A11" (lstr "10") (str "10"),
addF "A12" (fun "=" [ref "A10", ref "A11"]) (boo False),
addF "A13" (fun "=" [ref "A10", lnum 10]) (boo True),
addF "A14" (fun "=" [ref "A13", lnum 1]) (boo True),

addF "B12" (fun "/" [lnum 1, lnum 0]) (err "#DIV/0!"),
addF "B13" (fun "=" [ref "G8", ref "B12"]) (err "#VALUE!"),
addF "B14" (fun "=" [ref "B12", ref "G8"]) (err "#DIV/0!"),

addF "G1" (fun "+" [lnum 1000, range "A1" "A2"]) (num 1015),

addF "C5" (range "A1" "A2") (err "#VALUE!"),
addAF "F5" "F6" (lmtx [[15], [16]]) (num 15),
addAF "D5" "D6" (fun "+" [range "A1" "A2", lnum 100]) (num 115)]

In http://hisham.hm/thesis one can �nd a number of tests using this test
driver. These tests document the speci�c behavior of the interpreter and also serve as
a list of corner cases which expose incompatibilities between real-world spreadsheet
applications.

http://hisham.hm/thesis

Appendix C

Demonstration of the interpreter

modeling LabVIEW

We present here a demonstration of the interpreter modeling LabVIEW. We pro-
duced several examples, which are available at https://hisham.hm/thesis/, along
with the resulting outputs of their execution. Here, we present only one of them.
This is the test for the �case� structure, represented in LabVIEW this way:

Through the process explained in Section 6.2.6, our interpreter produces a visu-
alization of the execution. This is a frame of the resulting animation, just before
performing the division:

The test program for this example is the following.
Again, the implementation uses only standard modules included in the Haskell

Platform.

import LvInterpreter
import Data.Sequence (fromList , elemIndexL)
import Data.List
import Data.Maybe
import Data.List .Split

151

https://hisham.hm/thesis/

APPENDIX C. LABVIEW INTERPRETER 152

main =
do

print vi
runVI vi

where vi = testingCase

C.1 Program construction

To ease the writing of tests, we construct LvVI objects using a convenience function
which converts the de�nition of wires from textual names to the numeric indices
expected by the interpreter.

data LvStringWire = LvStringWire String String
deriving Show

wire :: String → String → LvStringWire
wire a b = LvStringWire a b

makeVI :: [(String ,LvControl)]→ [(String ,LvIndicator)]
→ [(String ,LvNode)]→ [LvStringWire]→ LvVI

makeVI ctrls indics nodes stringWires =
LvVI {

vCtrls = ctrls ,
vIndics = indics ,
vNodes = nodes ,
vWires = map convert stringWires
}
where

convert :: LvStringWire → LvWire
convert (LvStringWire src dst) =

let
(typesrc, srcElem, port′

src) = findElem ctrls LvC vIndics src
(typedst, dstElem, port′

dst) = findElem indics LvI vCtrls dst
in

LvWire Ltypesrc, srcElem, port′
srcM

Ltypedst, dstElem, port′
dstM

findIndex :: [(String , a)]→ String → Maybe Int
findIndex es name = elemIndex name $ map fst es

must :: (String → Maybe a)→ String → a
must fn name = fromMaybe (error ("No such entry " ++ name))

(fn name)

findElem :: [(String , a)]→ LvElemType → (LvVI → [(String , b)])
→ String → (LvElemType, Int , Int)

findElem entries etype elems name
| isJust $ find (≡ ':') name =

let

APPENDIX C. LABVIEW INTERPRETER 153

[elemName, portName] = splitOn ":" name
elem = (must ◦ flip lookup) nodes elemName

in
(LvN , (must ◦ findIndex) nodes elemName, findPort elem portName)

| otherwise =
case findIndex entries name of
Just i → (etype, i , 0)
Nothing → findElem entries etype elems (name ++ ":0")
where

findPort (LvStructure sv) = must $ findIndex (elems sv)
findPort (LvCase svs) = must $ findIndex (elems (head svs))
findPort (LvFunction) = λs → if null s then 0 else read s
findPort = λs → 0

C.2 Demonstration of the VI

This is the example displayed in Figure 6.1.

testingCase =
makeVI

[-- controls
]
[-- indicators

("result",LvIndicator (LvArr []))
]
[-- nodes

("3",LvConstant (LvI32 3)),
("for",LvStructure LvFor (makeVI

[-- controls
("i",LvAutoControl),
("N",LvTunControl)

]
[-- indicators

("out",LvTunIndicator LvAutoIndexing)
]
[-- nodes

("case",LvCase [
(makeVI

[-- controls
("case",LvControl (LvI32 0)),
("in",LvControl (LvI32 0))

]
[-- indicators

("out",LvIndicator (LvI32 0))
]

APPENDIX C. LABVIEW INTERPRETER 154

[-- nodes
("+",LvFunction "+"),
("10",LvConstant (LvI32 10))

]
[-- wires

wire "in" "+:0",
wire "10" "+:1",
wire "+" "out"

]
),
(makeVI

[-- controls
("case",LvControl (LvI32 0)),
("in",LvControl (LvI32 0))

]
[-- indicators

("out",LvIndicator (LvI32 0))
]
[-- nodes

("-",LvFunction "-"),
("10",LvConstant (LvI32 10))

]
[-- wires

wire "in" "-:0",
wire "10" "-:1",
wire "-" "out"

]
),
(makeVI

[
("case",LvControl (LvI32 0)),
("in",LvControl (LvI32 0))

]
[-- indicators

("out",LvIndicator (LvI32 0))
]
[-- nodes

("*",LvFunction "*"),
("/",LvFunction "/"),
("10",LvConstant (LvI32 10)),
("2",LvConstant (LvI32 2))

]
[-- wires

wire "in" "*:0",
wire "10" "*:1",
wire "*" "/:0",

APPENDIX C. LABVIEW INTERPRETER 155

wire "2" "/:1",
wire "/" "out"

]
)

])
]
[-- wires

wire "i" "case:case",
wire "i" "case:in",
wire "case:out" "out"

]
))

]
[-- wires

wire "3" "for:N",
wire "for:out" "result"

]

	Introduction
	Motivation
	Problem statement

	Background
	End-user programming
	Roles of programming in end-user applications
	The three-layer architecture in end-user programmable applications
	Scripting languages

	Dataflow programming
	A brief history of dataflow
	Static and dynamic dataflow models
	Data-driven and demand-driven dataflow
	Uni and bi-directional flow

	Design alternatives for dataflow UI-level languages
	Hils's classification of design alternatives
	An extension to Hils's classification
	Dataflow model
	N-to-1 inputs
	Time and rate-based evaluation
	Separate programming and use views
	Indirect connections
	Textual sub-language

	Non-dataflow UI-level languages
	Case studies
	Discussion: On the use of definitional interpreters

	Case study: Pure Data
	Overview of the language
	Nodes and values
	Graph evaluation
	Messages and the textual sub-language
	Node triggering

	An interpreter modeling the semantics of Pure Data
	Representation of programs
	Representation of states
	Execution
	Main loop
	Event processing
	Audio processing
	Initial state

	Operations
	Atom boxes
	An object with side-effects: print
	An object with hot and cold inlets: +
	Objects producing timed events: delay and metro
	Message handlers for audio objects: osc126 and line126
	Cold inlets
	Data objects: float and list
	Audio handling operations: osc126, line126 and 42126

	Demonstration

	Discussion: Syntax and semantics in visual languages

	Case study: spreadsheets
	The formula language
	Syntax
	Values and types

	Evaluation model
	Array formulas

	An interpreter modeling spreadsheet semantics
	Representation of programs
	Representation of states
	Execution
	Main loop
	Resolving addresses

	Calculating cell values
	Regular cell evaluation
	Cell evaluation for array formulas

	Operations
	Literals, references and ranges
	IF, AND, and OR
	SUM
	INDIRECT
	String operations
	Mathematical operations and equality
	Type conversions

	Demonstration

	Discussion: Language specification and compatibility issues

	Case study: LabVIEW
	Overview of the language
	Execution modes
	Data types and wires
	Looping and cycles
	Timing
	Tunnels
	Other control structures

	An interpreter modeling the semantics of LabVIEW
	Representation of programs
	Representation of state
	Execution
	Main loop
	Initial state
	Event processing
	Firing data to objects

	Nodes and structures
	Constant nodes
	Feedback nodes
	Function nodes
	Control structures

	Operations
	Numeric and relational operators
	Array functions
	Random Number
	Wait Until Next Ms

	Demonstration

	Discussion: Is LabVIEW end-user programming?
	LabVIEW and Pure Data compared

	Some other languages
	Reaktor
	VEE
	Blender
	Discussion: Dataflow end-user programming, then and now

	Design alternatives critiqued
	Graph evaluation
	Static and dynamic dataflow models
	Data-driven and demand-driven dataflow
	Uni and bi-directional dataflow
	N-to-1 inputs
	Timing considerations
	Indirect and dynamic connections

	Language features
	Selector/distributor
	Iteration
	Sequence construct
	Subprogram abstractions
	Higher-order functions

	Type checking
	Other aspects
	Liveness, representation and modes
	Textual sub-language and scripting

	Discussion: An architectural pattern for end-user programmable applications

	Conclusion
	Demonstration of the interpreter modeling Pure Data
	Demonstration of the spreadsheet interpreter
	Formatting
	A test driver
	The example spreadsheet

	Demonstration of the interpreter modeling LabVIEW
	Program construction
	Demonstration of the VI

