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Abstract

The availability of a “TCP-like multicast service” is a common assumption among
group communication protocols. This assumption has been inefficiently satisfied through
either multiple TCP connections or broadcasting. In this paper, we specify the require-
ments for such TCP-like multicast service, and then present a scalable reliable multicast
protocol, called PRMP, that satisfies these requirements. PRMP allows a group commu-
nication protocol to provide high-level services efficiently and scalably for fault tolerant
applications. We describe the architecture used to implement PRMP in Java, and how
this implementation was used to perform a set of practical experiments simulating group
communication. Experimental results show that PRMP outperforms two other alterna-
tives, while still presenting less network cost.

keywords: reliable multicast, group communication, TCP.

1 Introduction

Building group communication systems capable of tolerating site crashes and network par-
titions has been under investigation for several years. Useful, programming paradigms such
as virtual synchrony (VS) have been specified ([1]). An efficient implementation of these
abstractions can be obtained if an underlying one-to-many “TCP-like multicast service”! is
available. Historically, such service has been implemented through multiple TCP streams
(e.g., Newtop [8], [15] and Phoenix [9]). Some other systems, like Transis ([7], [5]), are based

on unreliable link-layer multicast /broadcast. Neither approach scales well, wasting network

lalthough we use the term “service”, one could employ “layer” or “abstraction” as well.



bandwidth and host resources, since broadcasting is limited to LANs, and multiple TCP
connections require many copies of the same packet to be redundantly transmitted over the
same communication channels. For communication over the Internet, this is unaffordable.

Group communication in the Internet is only feasible through IP multicast (see [6]). IP
multicast is capable of efficient and scalable packet delivery: packets are routed through
multiple networks according to a multicast tree, built using a multicast routing protocol
(e.g., DVMRP or PIM). A packet only traverses an edge once. Using IP multicast, a peer
node may send packets to a given network address (IP class D), without having to (or
being able to) determine the exact membership of the set. Several group communication
protocols, such as Horus ([17]), claim to be able to take advantage of IP multicast, even
though scalability issues such as feedback implosion are not addressed ([4]).

In this paper, we describe a “scalable reliable multicast protocol” called Polling-based Re-
liable Multicast Protocol (PRMP), which efficiently implements the TCP-like multicast
service required by group communication systems. Note that our purpose is not to pro-
pose a new group communication protocol, which is more efficient, more scalable, or both,
but instead to support other group communication systems by providing the often required
TCP-like multicast service they assume to exist.

The rest of this paper is organized as follows. In Section 2, we introduce the concept of the
TCP-like multicast service by defining the set of requirements. In Section 3 we discuss the
PRMP controls and how they are used to satisfy the requirements. Experimental evaluation
results are given in Section 4, which are followed by concluding remarks in Section 5.

2 TCP-like Multicast

As already mentioned, the feasibility of group communication protocols in the Internet
depends on the use of IP multicast, for IP multicast is required to efficiently distribute
packets along a tree of routers and receivers. Unfortunately, IP multicast may silently drop
packets along the network. Further, packets may be duplicated, arrive of out order, or else
suffer extreme delays. A packet drop may result in many receivers experiencing a given loss
(see [21] for a study on spatial and temporal loss correlation in the Mbone). To deal with
such events, basic Error Control techniques may be used. The simplest approach to loss
recovery is a multicast stop-and-wait scheme, which works as follows. The sender sends a
packet using IP multicast; upon receipt, each receiver unicasts a positive acknowledgment
(ACK) to the sender. The sender waits on a timer, expecting one ACK from each of the
receivers (as long as the sender knows who are the receivers). If all ACKs arrive within
expected time, the sender can transmit a new data packet. Otherwise, the timer expires
and the sender re-transmits the packet via multicast. This protocol is inefficient because it
transmits a single packet per round-trip-time (RTT). A multicast sliding window ([2]) can
be added to such protocol, allowing the sender to transmit several packets before waiting
for any ACKs. A protocol where the sender sets a timer and expects ACKs from receivers is
called sender-initiated ([20]). One such example is the Single Connection Emulation (SCE),
an attempt to hide multicast behind TCP interface [19]. Sender-initiated protocols do not
scale well because of the well-known problem of feedback implosion. Later in the paper, we
show in practice how badly this kind of protocol performs (see “FF” in Section 5).



Newer protocols have been devised with scalability in mind, reducing the amount of feed-
back required. Several Implosion Control schemes have been introduced (see [16] for some
examples). In general, these newer protocols attempt to make throughput, cost and (sender)
state independent of group size. Because error recovery responsibility lies with the receivers,
they are often called receiver-initiated ([20]). The design of the protocol trades off reliability
(and performance) for scalability. There is no mechanism to keep track of membership: the
sender remains unaware of how many receivers exist and their identity. Receivers join the
group by subscribing to the proper IP multicast address. Network topology is harnessed
through hierarchy: receivers are logically organized so that some act as re-transmitters for
nearby receivers (local recovery). This model is highly scalable, and has been successfully
used for one-to-many bulk dissemination of data and “semi-reliable” transmission of mul-
timedia contents. However, because no state about receivers is maintained at the sender,
receiver-initiated protocols cannot provide “end-to-end reliability” that is expected from the
TCP-like multicast service required by group communication protocols. Further, [12] shows
that these protocols require infinite buffers in order to prevent deadlocks.

Below, we identify a set of requirements for the TCP-like multicast service, based on what
TCP connections offer and what group protocols assume to be available. The requirements
are:

(r1) the protocol must control the level of feedback sent by receivers so to avoid feedback
implosion;

(r2) end-to-end “reliable” transmission of a datagrams (or bytes of a stream) to multiple
receivers, detecting packet losses and recovering from them in order to mask omissions,
duplications and re-orderings;

r3) initial multicast group setup and control, detecting host crashes and persistent networ
3) initial multicast group setup and control, detecting host crashes and persistent network
partitions and mapping them as “connection breaks”;

(r4) manage finite buffers at sender and receivers, also preventing unnecessary packet losses
due to receiver overrun; and in the case communication takes place over Wide Area
Network (WAN) links,

(r5) help alleviating congestion in bottleneck routers within the network in a way that is
“TCP-friendly”).

The above requirements? make a difficult task to provide a TCP-like multicast service. IP
multicast was introduced around 1990 (|6]), but still nowadays all of the above requirements
for reliable multicast are yet to be satisfied in the same protocol. This is mainly because
most research on scalable reliable multicast has attempted to come up with protocols that
will scale to very large number of receivers, and whose performance and cost are independent
of group size. To achieve this, the sender cannot control membership. So, most research
on the field of scalable reliable multicast protocols have adopted receiver-initiated models,
for the sake of improved scalability. Below we discuss why such protocols fail to satisfy the
above requirements.

2Multimedia applications exhibit a requirement which is not covered by TCP: soft real-time delivery.



First, receiver-initiated protocols tend to satisfy (rl), as they avoid implosion through
NACK-based Error Control, Forward Error Correction and/or hierarchy. However, as shown
in [12], they can only satisfy (r2) as long as that they have infinite buffers and session time.
They do not satisfy (r3), because even though some protocols might count with a “loose”
Session Control (e.g., SRM [10]), the (unreliable) group membership must remain hidden
at the TP multicast layer. They also do not satisfy (r4), since the sender cannot safely
predict buffer availability at receivers (Flow Control in this case fluctuates the sending rate
to attempt to reduce overrun losses). Finally, it is hard to satisfy properly requirement
(r5), because TCP Congestion Control is sender-initiated (and since this is fundamental
for Internet stability, new schemes for congestion control for reliable multicast are being

intensely investigated).

We conclude defining a TCP-like multicast service as a one-to-many protocol that would
fulfill all the requirements above.

3 PRMP Protocol Controls

PRMP has been described elsewhere ([2], [3], [13]); in this section, we provide an overall
view and elaborate on how PRMP meets the five requirements through its corresponding
controls.

Data is placed in data packets and transmitted via IP multicast to receivers. Sender and
receivers keep a sliding window, called send and receive window, respectively; the sender
marks in the send window which data packets have been positively ACKed and by which
receivers, according to the feedback (response packets) it receives. To avoid feedback im-
plosion, the sender uses polling to control the amount of feedback generated by receivers:
only when prompted by a polling request, a receiver can unicast a response containing its
status (ACKing and NACKing several data packets at once). When a response arrives at the
sender, the send window is updated, and loss detection and recovery takes place. The sender
detects data packet losses through NACKs contained in the responses sent by receivers after
poll requests. Recovery is achieved by means of retransmissions, which may be either by
(multiple) unicast operations or a single multicast, depending on the number of copies to
be retransmitted. Poll requests and responses may be lost too, and their loss is detected
by the sender through timeouts. If so, the sender re-sends a polling request and sets a
new, enlarged timer to wait for a response; the process is repeated until either a response is
received or the sender gives up on the receiver and removes it from the session. The receive
window slides forward according to the receipt of data packets, and their (in FIFO order)
consumption by an upper layer (application or group communication system). The send
window slides forward according to responses from receivers, allowing the transmission of
new data. This mechanism dictates that a new data packet can only be transmitted if the
sender can guarantee that the packet can be safely received and stored in receiver’s buffers.
Below, we briefly describe each of the control mechanisms.



3.1 Implosion Control

The Implosion Control mechanism of PRMP is based on a poll-planning scheme: the sender
plans when responses should arrive so that they are uniformly distributed in time, and do
not exceed a given rate. To control the arrival time of responses, the sender uses the RTT
up to receivers and adjusts the time in which requests are sent (delay transmissions).

Time ahead is divided in epochs, periods of equal length. The purpose of the poll planning
mechanism is to schedule a maximum number responses per epoch. To keep track of sched-
uled responses, it employs a vector, whose entries count the number of responses expected
per epoch. Whenever an epoch is full, the mechanism finds the next “available” epoch in the
future able to accept a new response. When so, the transmission of the request is delayed
accordingly.

To save bandwidth, the mechanism is designed so that, if possible, a poll request is sent
piggybacked onto a data packet. Further, poll requests are sent on demand: when there is
no data to be ACKed, or Session Control to be performed, the sender does not send poll
requests unnecessarily.

3.2 Session Control

Session Control has typically three phases: connection establishment, connection manage-
ment and connection tear-down. In PRMP, the connection establishment is responsible for
establishing contact between sender and receivers. Like TCP, PRMP uses the three-way
handshake scheme (|18]). PRMP has two connection establishment models: invitation and
announcement. In the former, the sender takes a list of receivers (IP addresses and ports to
contact) and spawns a given number of threads, which continuously employ the three-way
handshake until all receivers on the list have been contacted or given up. The number of con-
current threads represent a tradeoff between efficiency and scalability. In the announcement
model, for a given time length, the sender keeps transmitting periodical announcement mes-
sages to a well-known IP multicast group. It waits and collects join requests from receivers,
and for each request received, it spawns a thread that handles the three-way handshake
protocol entirely.

Having the connection been successfully established, connection maintenance (the phase
of actual data transmission) begins. Like with TCP Session Control, suspicions of host
crashes or network disconnections are based on continuous exchange of polling requests and
responses. After sending a packet, the sender waits on a timer which must be sufficiently
large to allow a receiver to receive a packet, send an ACK, and such an ACK arrive at the
sender. When there is a timeout, the sender assumes that the packet or its corresponding
ACK has been lost, and tries again. After a given number of consecutive retries, the sender
suspects the receiver, the host or the network that connects to it has failed, and considers
the connection to the receiver to be broken (the receiver is then removed from the group,
and this condition is reported to the upper layer).

Since nothing is assumed of the data generated by the application, there can be long periods
of inactivity. To keep the connection alive, the sender periodically sends a request to elicit a
response from a receiver. A suspicion cannot always be correct, as network loads and hence



RTTs cannot be always accurately predicted. So, false suspicions are possible and are even
acted upon as the only way to ensure liveness in applications. However, at the end of a
multicast session, the sender can guarantee that the set of receivers that have remained in
the session have received all data transmitted.

A receiver may also leave a session spontaneously. The sending upper layer will be informed
through an exception, but the session goes on if there exists at least one receiver. In contrast,
new receivers are not admitted in an ongoing session. To implement a join membership
change during the multicast session, the group communication system should open a new
session and close the ongoing one. This will force a synchronization.

A connection tear-down can only be initiated by the sender. Receivers are polled once more,
to confirm the receipt of all pending data. This is done scalably by the usual planning of
poll request and responses.

3.3 Error Control

As already mentioned, packet loss detection and recovery is based on an efficient multicast
sliding window scheme which allows multiple data packets to be outstanding in the network
(see [3] for details). Sender and receivers negotiate the window size at connection establish-
ment. Each entry of the window corresponds to a fixed-size data unit. Each data unit is
uniquely identified by a sequence number and transported in data packets. These may drop
or reordered by the network. The receiver suspects it missed a packet when it finds a gap
in the packet sequence. If polled, a receiver sends a response which will reproduce the gap
to the sender (this corresponds to a NACK).

Reliable multicast cannot scale if all losses result in multicast retransmissions. So, a protocol
must balance when to retransmit with multicast and when with unicast. In PRMP, losses of
data packets reported are treated together. NACKSs are collected before a decision is made
regarding the way the retransmission is done. The sender decides to retransmit whenever it
has collected sufficient NACKSs to justify a multicast retransmission, or else it has collected
all NACKs and ACKs regarding the packet and there is no justification for multicast (it
sends via multiple unicasts).

After sending a poll request, then sender waits on a timeout for receiver responses. This
timeout period, called RTO (retransmission timeout) must be long enough to allow all
receivers responses to be received and treated. The RTO is fixed based on the sender’s
estimate of RTTs so that premature retransmissions are avoided.

3.4 Flow Control

PRMP prevents unnecessary losses due to receiver overrun. Packets are delivered in FIFO
order to the upper layer. When packets arrive at a receiver, they are placed in a buffer as
long as there is space. As in TCP, even though data may be ready for consumption, the
upper layer may not be. Therefore, unlike protocols for bulk data transmission, a TCP-like
multicast service must cope with the situation where the upper layer blocks for arbitrarily
long, and packets “clog up” in the receive buffer. In receiver-initiated protocols, the sender



may transmit packets without feedback from receivers, and a large number of packets might
be discarded.

PRMP is conservative, since the sender only sends new packets when it can guarantee that
all receivers have enough space to safely store the packet. Not a single packet is discarded
due to overrun; if the upper layer blocks or is slow, the buffer will eventually fill, and the
space reported (through responses) to the sender will prevent it from transmitting new
packets.

3.5 Congestion Control

PRMP performs congestion control almost the same way as TCP. For this reason, we de-
scribe briefly Congestion Control in TCP. TCP uses a congestion window which restricts
the transmission of new data packets by reducing the (value of) “available window” to no
more than cw packets. The value of cw is additively incremented when packets are pos-
itively ACKed and multiplicatively decremented when losses are detected. In TCP, this
corresponds to a retransmission timeout event. At the start of the session, the value of cw
is set to 1 and increased exponentially every RTT until a loss is detected; this is called slow
start (see [18] for details).

To implement additive increase, the sender must enlarge the window in 1 packet for each full
window successfully sent. This way the sender slowly probes for additional capacity, until
the maximum window size is encountered, or a loss is detected (there is a retransmission
timeout). If there is a loss, cw is reset to 1 and the protocol enters slow start, during
which the value of cw is incremented in 1 at each ACK received, making the size of cw
double at each RTT. Slow start stops when cw reaches half its value when the loss occurred.
Alternatively, if a technique called fast recovery is used, there is no slow start phase after
losses, and for each timeout, cw is reduced in half.

In PRMP, the congestion window is one for all send windows. The value of cw is increased
when a data packet gets fully ACKed. When a packet gets NACKed for the first time, it is
equivalent to a TCP timeout: the value of cw is set to 1, and slow start begins.

3.6 Requirements

Having described PRMP controls, now we show how PRMP satisfies all TCP-like multicast
service requirements:

(r1) it effectively reduces feedback and avoids implosion, which can be seen on the simula-
tions presented in [2] and the practical results shown later in Section 5;

(r2) it detects data packet losses through responses, and losses of poll requests and re-
sponses through timeouts, being both are recovered through retransmissions;

(r3) it has a clever Session Control mechanism which allows the sender to (scalably) keep
track of the membership similarly to TCP;

(r4) it fully prevents overrun losses since the sender has enough information to carefully
decide when to send new data; and



(r5) it achieves TCP-friendly multicast congestion control as it mimics the congestion win-
dow of TCP by monitoring full ACKs and first NACKSs.

4 Protocol Architecture and Implementation

4.1 Why Java

The Java platform has proven to be to be a suitable environment for the development
of PRMP. At first, the main factor leading against its choice was the amount of system
resources required by the JVM (Java Virtual Machine), in terms of processing and memory
consumption, although this tends to be less of an issue as hardware evolves ([11]). On
the other hand, the Java language, API (Application Programming Interface) and virtual
machine provides a consistent environment for the implementation of a protocol like PRMP.
Its object-oriented approach suited the modeling of the protocol very well. Further, the
binary-level portability of Java code is a great advantage when it comes to heterogeneous
network environments, such as the Internet.

In Java, the sockets API is available through a set of classes® that are distributed with
the Language implementation. Actually, Java eases the task of network programming
by extending basis socket classes, providing useful abstractions. Two such examples are
TCP input/output streams and object serialization (also known as marshaling). In par-
ticular, PRMP employs DatagramSocket and DatagramPacket classes, which allow the cre-
ation/transmission/reception of datagram packets in a well structured and simple manner.

PRMP packets can carry relatively complex objects, like the sliding window contained in
response packets. As datagram packets can only transport raw bytes, the Java-provided
Serializable! interface is used to marshal and unmarshall objects. An object of a class that
implements this interface can be converted to a byte array that will contain all information
about the internal state of the object. The array can be used to reassemble (unmarshall)
the object, recovering the original data. The main disadvantage of this scheme is the added
overheads: the processing overhead, due to the time spent serializing and de-serializing
objects, and the bandwidth overhead, due to the extra space in packets that is required to
store the structure and identification of the class of the object being transmitted.

Due to its sophisticated Controls, the PRMP sender is somewhat complex. The complex-
ity is reduced through a multi-threading architecture: concurrent threads interact through
queues and tables, making use of monitors to avoid race-conditions. Mutual exclusion is
implemented through the synchronized modifier. Java has support for concurrent program-
ming through a set of classes to allow the creation/monitoring/elimination of threads, as
well as monitors.

4.2 Architecture

The internal protocol structure is completely based on object orientation and concurrent pro-
gramming. The complexity is broken by using one different synchronous thread to perform

3http://java.sun.com/j2se/1.3/docs/api/java/net/package-frame.html
*http://java.sun.com/j2se/1.3/docs/api/java/io/Serializable.html



each of the main jobs. We identify four main jobs in the sender, namely: (i) transmission of
data and poll packets (including the planning of polls); (ii) reception and handling of feed-
back packets (and the associated loss detection and recovery); (iii) handling of asynchronous
events (setting timers, canceling timers and treating timeouts); and (iv) interfacing with the
upper-layer, including separation of data into blocks ready for transmission. Hence, there
are four threads.

Figure 1 illustrates the overall architecture. The Generator Module (GM) interfaces with
the upper layer. The upper layer writes data to GM, which “generates” and queues up data
packets for transmission in the Transmission Queue (TxQ). The Transmitter Module (TxM)
reads from TxQ, performs the (re)transmissions of data and poll packets, programming
timeouts whenever poll requests are sent. To program a retransmission timeout, the TxM
enqueues a new event in the Timeout Queue (ToQ). The Event Module (EM) reads from
ToQ and is responsible for timeout handling; when so, EM enqueues re-polling requests in
TxQ for TxM to handle. The Response Handler Module (RHM) receives response packets
sent by receivers, canceling pending timeout events in To(Q) when all responses expected
from a poll request have been received. Also, when a response is received from a given
receiver, RHM updates the estimate of RTT for that receiver and its corresponding send
window. When updating the send window, RHM may start error recovery: it detects a loss,
collects ACKs and NACKSs, and when it eventually decides to retransmit a packet, it does
so enqueing the packet in TxQ. When all receivers have positively ACKed and delivered
the packet, RHM may slide forward the window, enabling GM to take more data from the
upper-layer (end-to-end Flow Control).

Upper-layer
free GM to take more data (open window)
GM
enqueue packets enqueue data packet retransmission
to transmit —
enqueue poll request retransmission
™>Q
EM
ToQ
enqueue event treat event

XM RHM
| A
| DATA/DATAPOLL RESP packets |
| POLL packets I
¥ 1
Network
RM, RM, RV, -~ RM,

Figure 1: Protocol internal architecture.



5 Experimental Results

This section presents the results obtained from a set of practical experiments we have con-
ducted with PRMP and two other protocols: multiple TCP streams and the Full Feedback
protocol. As the name indicates, the multiple TCP streams scheme emulates multicast
through N — 1 TCP streams. Because TCP has built-in Error, Flow, Congestion and Ses-
sion Controls ([18]), the sender may simply send (write to a stream) and forget. A “multicast
packet” is sent by writing the required number of bytes N — 1 times, one for each stream.
The second alternative is the Full Feedback protocol (see [2]), or simply “FF”. All data pack-
ets are sent via IP multicast. FF is a reliable multicast protocol with sliding window Error
and Flow Controls, in which receivers send ACKs for each packet received (this protocol is
a similar, but slightly wiser, version of the A protocol found in [20]).

5.1 Experiment Settings

The frequency and size of messages generated by the group communication system will
depend on the particular application. Therefore, one should not make assumptions about
transmission bursts, average message size and so on. In our tests, we chose to emulate a
group communication system for a symmetric, closed group model of N nodes that behave
synchronously (see below). Each “application node” transmits and receives messages to the
other N — 1 nodes and is implemented through a multi-threaded Java program comprised
of 1 sender and N — 1 local receivers.

The group computation advances in “rounds”, similarly to the synchronous model described
by Lynch ([14]): a round consists of sending a message to neighbors (in this case, everyone),
receiving one message from each neighbor (everyone), and then processing messages to make
a state transition. These messages are of the type DATA and have size S bytes. A node
sends a DATA message to the group, waits until N — 1 DATA messages are received from its
peers, and then spends a random time (uniform distribution between 0 and T'p ms) while
“processing” the messages. Each node performs M of the above rounds, and then gracefully
closes its session.

An external “coordinator” controls the experiment and collects output information. The
experiments starts with each node establishing a “multicast session” with the other N — 1
members, resulting in a full mesh®. After establishing a session, a node sends a READY
message to the coordinator; when the coordinator has collected all READY messages, it
sends a START message to all nodes, which then start the first round.

In the tests, we fixed the amount of data to be transmitted by each node in 1,000,000
bytes. We performed two sets of experiments, one using a message size S of 1000 bytes
(thus M was 1000 rounds), and another using a message size S of 4000 bytes (thus M was
250 rounds). Tp was set to 100 ms (mean 50 ms). This means that each group node will
send to the group either 1000 or 250 messages of 1000 or 4000 bytes each, respectively, and
that at end of the session a node will have received 1,000,000 x (N — 1) bytes of data.
Messages of size S will be transported by PRMP and FF in packets of 1000 bytes; therefore,

with multiple TCP stream protocol, connections are bi-directional and so N(N — 1)/2 streams are
required.



a message may trigger the sending of 1 or 4 data packets, plus at least one feedback packet.
(In multi-TCP, the packet size will vary.) Each protocol will therefore generate a flow of
feedback packets. In PRMP such flow was restricted by setting the parameter Response
Rate (RR) to 20 responses/sec. That is, each sender (at each node) will control feedback
such that no more than 20 response packets are received per second. However, a node will
also receive messages (i.e., data packets) from N — 1 nodes. FF and multi-TCP do not
control the amount of feedback.

The experiments were run in a controlled environment. Although the configuration was
a Local Area Network comprised of around 70 PCs, in the tests we employed a subset
of 10 machines equally-equipped: PC Pentium III-450MHz with 64 MB of RAM, and Fast
Ethernet boards used however in ordinary Ethernet mode (10 Mbps). The operating system
was GNU/Linux v.2.2.14, and the development/runtime environment was Sun JDK v.1.3.

In order to evaluate PRMP and compare it with FF and multi-TCP, we chose two metrics:
T, defined as the “total time”, and C|, the “total network cost” in bytes. Below, these metrics
are explained along with the experiment and result description.

5.2 Total Time

The total time T at each node i is measured as the time between the delivery (to the upper
layer) of the START message and the last of all N —1 messages of the round M. The overall,
total time T is the largest T4 recorded among all nodes, that is, maximum 7%. Figure 2
presents the total time 7" (in seconds) in function of N, for S = 1000 (left) and S = 4000
(right). In both graphs, we show a curve that corresponds to the minimum time 7', a lower
bound on T calculated as the sum of all processing times T'p. Since average T'p was set
to 50 ms, T could never be less than 50 seconds for M = 1000 rounds and 12.5 seconds
for M = 250 rounds. In other words, the best result for T' would only be achievable with
imstantaneous copy of messages among remote nodes.
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Figure 2: Total time T in seconds in function of N, for N = 2 to 10, with S = 1000 bytes
(left) and S = 4000 bytes (right).

First compare the scale on the two graphs of Figure 2. Note that although the results are
consistent between the two, the performance on the right (S = 4000) is much higher than
on the left, which occurs because group synchronization on the right takes place 4 times less



frequently. In other words, if S = 4000, a node can send 4 packets of 1000 bytes without
having to wait for the next round®.

Note also that, for any protocol, T is expected to grow with N. There are reasons for this:
the volume of data being transferred grows exponentially with N, and so does the combined
probability of a receiver experiencing a packet loss in any single multicast transmission.
Additionally, since in each round a node will receive N —1 messages, more and more messages
need to be delivered to the upper layer.

As it can be seen in Figure 2, the multi-TCP scheme presented the worst performance
of all: its time T grows exponentially with N. This is mainly due to the fact that the
multi-TCP approach requires each message to be transmitted N — 1 times over the network,
with two implications. First, the sending of packets takes time, in particular larger data
packets. Second, the amount of traffic grows heavily and will cause losses, which on their
turn will require loss detection and recovery. For TCP, Congestion Control will also affect
performance for S = 4000, as the congestion window will be reduced to 1 segment after
each loss; this prevents a network collapse. Like TCP, the time required for FF also grows
exponentially. However, unlike TCP, FF will try to recover from losses by re-multicasting
packets, which is equivalent to trying to “put off a fire with gasoline”. That is why the FF
curve in the graphs are incomplete: all experiments for N > 5 with § = 1000 or N > 4
with S = 4000 led to network collapse, being aborted after several minutes of no progress
being recorded at all. In contrast to multi-TCP and FF, the time T" of PRMP grows slowly
with N, from 80 to 120 sec as N increases 5 times. These results demonstrate that PRMP
remains efficient as N grows, in particular if one considers the increasing host load and
combined probability of loss that a protocol must cope with.

5.3 Network Cost (bandwidth)

The cost C7 is the total number of bytes passed by the protocol to UDP for transmission
(via multicast or unicast), either data or feedback packets, and considers all the overhead
included by Java object serialization. Note that C' intentionally benefits multicast: the
number of bytes in a multicast transmission is the same of unicast. The overall C, presented
in the graphs, is the sum of all Ci’s.

Figure 3 shows in log scale the network cost N measured in Mbytes, for all three protocols.
It also shows, for the sake of comparison, an optimal case (“optimum”). The optimum curve
is a lower bound on the bandwidth consumption: it considers only the data transmitted
by the upper layer, without any protocol overhead such as headers and feedback packets.
The Ci for a given node ¢ cannot be less than the amount to be transmitted by each
node: 1,000,000 bytes (nearly 1 Mbyte). The overall C for the optimum curve is therefore
N x 1,000,000 bytes, or 9.5 Mbytes for N = 10.

The network cost shown for multi-TCP in Figure 3 is also an optimistic value. Since the cost
C for the multi-TCP protocol could not be measured without using kernel-level tools, C for
multi-TCP represents a lower bound, adding only an overhead of 20 bytes (TCP header)
for each message transmitted to a node (this number would be greater for S = 4000 bytes,
where more than 1 packet would be necessary to transport each of the 250 messages).

Ssubject to the sliding window of the protocol underneath.
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Figure 3: Network cost C' in Mbytes in function of N, for N = 2 to 10, for S = 1000 bytes
(left) and S = 4000 bytes (right).

First note that, as for time T, the cost C presented on the graph on the left (S = 1000) are
higher than those on the right (S = 4000). This is because 4 times more feedback packets
will be required when S = 1000 (except for TCP, which may piggyback ACKs). Note also
that the Y axis is in log scale.

Second, note that the unscalable nature of FF, without Implosion Control, appears clearly
in the results; in Figure 3 (left), to transfer approximately N Mbytes, FF cost grows aggres-
sively from 5 to 300 Mbytes when group size grows from 2 to 5. The multi-TCP approach
is more economical than PRMP for N = 2, and similar for N = 3 or 4. This is because
the multi-TCP approach was designed to take advantage of the fact that TCP streams are
bi-directional: with 2 nodes only, there is a single connection and no overhead (in fact, it is
TCP traditional point-to-point communication!) For larger groups, multi-TCP demands on
network traffic grow acutely, which is explained by the fact that each node must send the
same data N — 1 times. PRMP, instead, presents a network cost that remains consistently
higher than the optimum, but proves to be substantially better than the other alternatives.

6 Concluding Remarks

The main contributions of this paper are (i) to specify which are the requirements for a
TCP-multicast service, an assumption of some group communication systems; (ii) to show
how our protocol, PRMP (presented in [2]) satisfies all these requirements; (iii) to provide
an architecture and implementation for PRMP in Java; and (iv) to show practical results
taken from an experimental evaluation with the implementation.

Unlike other “scalable reliable multicast protocols”, PRMP does not trade off reliability,
performance or network cost for unlimited scalability. The TCP-multicast service is the
layer over which group communication systems can be built. Multiple TCP connections are
inefficient and restricted to a few receivers; broadcast is wasteful and does not scale.

Other scalable reliable multicast protocols are not suitable for group communication support
because they emphasize scalability to the extreme, negatively affecting other aspects, and
typically assume a bulk data dissemination. PRMP is the first protocol to attack all TCP-



like multicast requirements together. Unlike other scalable reliable multicast protocols, in
PRMP the sender maintains the membership information and uses this information for the
benefit of other mechanisms. A multicast protocol cannot provide “end-to-end reliability”
unless a sender knows and controls the membership set it is transmitting to. Indeed, PRMP
benefits from keeping receiver’s state in several ways: (a) it can avoid implosion, by planning
arrival of feedback packets; (b) it can efficiently detect and recover from packet losses; (c) it
uses up-to-date RTT estimates to make fewer mistakes while suspecting receiver failures; (d)
it does not make assumptions regarding the traffic generated by the application; (e) it does
not require infinite buffers to deliver all data to all receivers in the session; (f) it prevents
unnecessary losses by overrun; (g) it uses a congestion window to perform TCP-friendly
Congestion Control.

To illustrate our point, we have described a PRMP implementation in Java and discussed its
performance. The results indicate that PRMP presents much lower network cost and better
throughput than the most commonly used alternatives. In absolute terms, we expect the
performance results for PRMP presented here may be increased by a factor of 10 if PRMP
is re-implemented in C or C++ ([11]).

In this paper, we were able to execute experiments in a single LAN. Performing practical
experiments with multicast applications using several networks has been very difficult for
many reasons. First, it requires many other people/institutions to collaborate in the test.
Second, a multicast transmission might easily swamp the network with excessive traffic.
Third, multicast must be enabled in all networks involved, and specially in the links inter-
connecting them (like with TP multicast tunnels). Finally, experiments should be conducted
“out of hours” in order to reduce the likelihood of extraneous traffic.

Nonetheless, as future work, we plan to extend our experiments to include several networks.
Even though it has been already shown that PRMP works well for such configurations (see
[3]), and that it can deal properly with heterogeneous RTTs, we would like to present an
experimental evaluation to validate the use of PRMP in supporting group communication
systems over sparsely distributed, large groups.
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