
E�ient TCP-like Multiast Support forGroup Communiation Systems
Marinho P. Barellos André DetshHisham H. Muhammad Guilherme B. BedinPIP/CA - Programa de Pós-Graduação em Computação ApliadaC6 - Centro de Ciênias Exatas e TenológiasUNISINOS - Universidade do Vale do Rio dos SinosSão Leopoldo/RS, CEP 93022-000 - Brazilhttp://www.inf.unisinos.br/�marinhoAbstratThe availability of a �TCP-like multiast servie� is a ommon assumption amonggroup ommuniation protools. This assumption has been ine�iently satis�ed througheither multiple TCP onnetions or broadasting. In this paper, we speify the require-ments for suh TCP-like multiast servie, and then present a salable reliable multiastprotool, alled prmp, that satis�es these requirements. prmp allows a group ommu-niation protool to provide high-level servies e�iently and salably for fault tolerantappliations. We desribe the arhiteture used to implement prmp in Java, and howthis implementation was used to perform a set of pratial experiments simulating groupommuniation. Experimental results show that prmp outperforms two other alterna-tives, while still presenting less network ost.keywords: reliable multiast, group ommuniation, TCP.1 IntrodutionBuilding group ommuniation systems apable of tolerating site rashes and network par-titions has been under investigation for several years. Useful, programming paradigms suhas virtual synhrony (VS) have been spei�ed ([1℄). An e�ient implementation of theseabstrations an be obtained if an underlying one-to-many �TCP-like multiast servie�1 isavailable. Historially, suh servie has been implemented through multiple TCP streams(e.g., Newtop [8℄, [15℄ and Phoenix [9℄). Some other systems, like Transis ([7℄, [5℄), are basedon unreliable link-layer multiast/broadast. Neither approah sales well, wasting network1although we use the term �servie�, one ould employ �layer� or �abstration� as well.

bandwidth and host resoures, sine broadasting is limited to LANs, and multiple TCPonnetions require many opies of the same paket to be redundantly transmitted over thesame ommuniation hannels. For ommuniation over the Internet, this is una�ordable.Group ommuniation in the Internet is only feasible through IP multiast (see [6℄). IPmultiast is apable of e�ient and salable paket delivery: pakets are routed throughmultiple networks aording to a multiast tree, built using a multiast routing protool(e.g., DVMRP or PIM). A paket only traverses an edge one. Using IP multiast, a peernode may send pakets to a given network address (IP lass D), without having to (orbeing able to) determine the exat membership of the set. Several group ommuniationprotools, suh as Horus ([17℄), laim to be able to take advantage of IP multiast, eventhough salability issues suh as feedbak implosion are not addressed ([4℄).In this paper, we desribe a �salable reliable multiast protool� alled Polling-based Re-liable Multiast Protool (PRMP), whih e�iently implements the TCP-like multiastservie required by group ommuniation systems. Note that our purpose is not to pro-pose a new group ommuniation protool, whih is more e�ient, more salable, or both,but instead to support other group ommuniation systems by providing the often requiredTCP-like multiast servie they assume to exist.The rest of this paper is organized as follows. In Setion 2, we introdue the onept of theTCP-like multiast servie by de�ning the set of requirements. In Setion 3 we disuss thePRMP ontrols and how they are used to satisfy the requirements. Experimental evaluationresults are given in Setion 4, whih are followed by onluding remarks in Setion 5.2 TCP-like MultiastAs already mentioned, the feasibility of group ommuniation protools in the Internetdepends on the use of IP multiast, for IP multiast is required to e�iently distributepakets along a tree of routers and reeivers. Unfortunately, IP multiast may silently droppakets along the network. Further, pakets may be dupliated, arrive of out order, or elsesu�er extreme delays. A paket drop may result in many reeivers experiening a given loss(see [21℄ for a study on spatial and temporal loss orrelation in the Mbone). To deal withsuh events, basi Error Control tehniques may be used. The simplest approah to lossreovery is a multiast stop-and-wait sheme, whih works as follows. The sender sends apaket using IP multiast; upon reeipt, eah reeiver uniasts a positive aknowledgment(ACK) to the sender. The sender waits on a timer, expeting one ACK from eah of thereeivers (as long as the sender knows who are the reeivers). If all ACKs arrive withinexpeted time, the sender an transmit a new data paket. Otherwise, the timer expiresand the sender re-transmits the paket via multiast. This protool is ine�ient beause ittransmits a single paket per round-trip-time (RTT). A multiast sliding window ([2℄) anbe added to suh protool, allowing the sender to transmit several pakets before waitingfor any ACKs. A protool where the sender sets a timer and expets ACKs from reeivers isalled sender-initiated ([20℄). One suh example is the Single Connetion Emulation (SCE),an attempt to hide multiast behind TCP interfae [19℄. Sender-initiated protools do notsale well beause of the well-known problem of feedbak implosion. Later in the paper, weshow in pratie how badly this kind of protool performs (see �FF� in Setion 5).

Newer protools have been devised with salability in mind, reduing the amount of feed-bak required. Several Implosion Control shemes have been introdued (see [16℄ for someexamples). In general, these newer protools attempt to make throughput, ost and (sender)state independent of group size. Beause error reovery responsibility lies with the reeivers,they are often alled reeiver-initiated ([20℄). The design of the protool trades o� reliability(and performane) for salability. There is no mehanism to keep trak of membership: thesender remains unaware of how many reeivers exist and their identity. Reeivers join thegroup by subsribing to the proper IP multiast address. Network topology is harnessedthrough hierarhy: reeivers are logially organized so that some at as re-transmitters fornearby reeivers (loal reovery). This model is highly salable, and has been suessfullyused for one-to-many bulk dissemination of data and �semi-reliable� transmission of mul-timedia ontents. However, beause no state about reeivers is maintained at the sender,reeiver-initiated protools annot provide �end-to-end reliability� that is expeted from theTCP-like multiast servie required by group ommuniation protools. Further, [12℄ showsthat these protools require in�nite bu�ers in order to prevent deadloks.Below, we identify a set of requirements for the TCP-like multiast servie, based on whatTCP onnetions o�er and what group protools assume to be available. The requirementsare:(r1) the protool must ontrol the level of feedbak sent by reeivers so to avoid feedbakimplosion;(r2) end-to-end �reliable� transmission of a datagrams (or bytes of a stream) to multiplereeivers, deteting paket losses and reovering from them in order to mask omissions,dupliations and re-orderings;(r3) initial multiast group setup and ontrol, deteting host rashes and persistent networkpartitions and mapping them as �onnetion breaks�;(r4) manage �nite bu�ers at sender and reeivers, also preventing unneessary paket lossesdue to reeiver overrun; and in the ase ommuniation takes plae over Wide AreaNetwork (WAN) links,(r5) help alleviating ongestion in bottlenek routers within the network in a way that is�TCP-friendly�).The above requirements2 make a di�ult task to provide a TCP-like multiast servie. IPmultiast was introdued around 1990 ([6℄), but still nowadays all of the above requirementsfor reliable multiast are yet to be satis�ed in the same protool. This is mainly beausemost researh on salable reliable multiast has attempted to ome up with protools thatwill sale to very large number of reeivers, and whose performane and ost are independentof group size. To ahieve this, the sender annot ontrol membership. So, most researhon the �eld of salable reliable multiast protools have adopted reeiver-initiated models,for the sake of improved salability. Below we disuss why suh protools fail to satisfy theabove requirements.2Multimedia appliations exhibit a requirement whih is not overed by TCP: soft real-time delivery.

First, reeiver-initiated protools tend to satisfy (r1), as they avoid implosion throughNACK-based Error Control, Forward Error Corretion and/or hierarhy. However, as shownin [12℄, they an only satisfy (r2) as long as that they have in�nite bu�ers and session time.They do not satisfy (r3), beause even though some protools might ount with a �loose�Session Control (e.g., SRM [10℄), the (unreliable) group membership must remain hiddenat the IP multiast layer. They also do not satisfy (r4), sine the sender annot safelypredit bu�er availability at reeivers (Flow Control in this ase �utuates the sending rateto attempt to redue overrun losses). Finally, it is hard to satisfy properly requirement(r5), beause TCP Congestion Control is sender-initiated (and sine this is fundamentalfor Internet stability, new shemes for ongestion ontrol for reliable multiast are beingintensely investigated).We onlude de�ning a TCP-like multiast servie as a one-to-many protool that wouldful�ll all the requirements above.3 PRMP Protool ControlsPRMP has been desribed elsewhere ([2℄, [3℄, [13℄); in this setion, we provide an overallview and elaborate on how PRMP meets the �ve requirements through its orrespondingontrols.Data is plaed in data pakets and transmitted via IP multiast to reeivers. Sender andreeivers keep a sliding window, alled send and reeive window, respetively; the sendermarks in the send window whih data pakets have been positively ACKed and by whihreeivers, aording to the feedbak (response pakets) it reeives. To avoid feedbak im-plosion, the sender uses polling to ontrol the amount of feedbak generated by reeivers:only when prompted by a polling request, a reeiver an uniast a response ontaining itsstatus (ACKing and NACKing several data pakets at one). When a response arrives at thesender, the send window is updated, and loss detetion and reovery takes plae. The senderdetets data paket losses through NACKs ontained in the responses sent by reeivers afterpoll requests. Reovery is ahieved by means of retransmissions, whih may be either by(multiple) uniast operations or a single multiast, depending on the number of opies tobe retransmitted. Poll requests and responses may be lost too, and their loss is detetedby the sender through timeouts. If so, the sender re-sends a polling request and sets anew, enlarged timer to wait for a response; the proess is repeated until either a response isreeived or the sender gives up on the reeiver and removes it from the session. The reeivewindow slides forward aording to the reeipt of data pakets, and their (in FIFO order)onsumption by an upper layer (appliation or group ommuniation system). The sendwindow slides forward aording to responses from reeivers, allowing the transmission ofnew data. This mehanism ditates that a new data paket an only be transmitted if thesender an guarantee that the paket an be safely reeived and stored in reeiver's bu�ers.Below, we brie�y desribe eah of the ontrol mehanisms.

3.1 Implosion ControlThe Implosion Control mehanism of PRMP is based on a poll-planning sheme: the senderplans when responses should arrive so that they are uniformly distributed in time, and donot exeed a given rate. To ontrol the arrival time of responses, the sender uses the RTTup to reeivers and adjusts the time in whih requests are sent (delay transmissions).Time ahead is divided in epohs, periods of equal length. The purpose of the poll planningmehanism is to shedule a maximum number responses per epoh. To keep trak of shed-uled responses, it employs a vetor, whose entries ount the number of responses expetedper epoh. Whenever an epoh is full, the mehanism �nds the next �available� epoh in thefuture able to aept a new response. When so, the transmission of the request is delayedaordingly.To save bandwidth, the mehanism is designed so that, if possible, a poll request is sentpiggybaked onto a data paket. Further, poll requests are sent on demand: when there isno data to be ACKed, or Session Control to be performed, the sender does not send pollrequests unneessarily.3.2 Session ControlSession Control has typially three phases: onnetion establishment, onnetion manage-ment and onnetion tear-down. In PRMP, the onnetion establishment is responsible forestablishing ontat between sender and reeivers. Like TCP, PRMP uses the three-wayhandshake sheme ([18℄). PRMP has two onnetion establishment models: invitation andannounement. In the former, the sender takes a list of reeivers (IP addresses and ports toontat) and spawns a given number of threads, whih ontinuously employ the three-wayhandshake until all reeivers on the list have been ontated or given up. The number of on-urrent threads represent a tradeo� between e�ieny and salability. In the announementmodel, for a given time length, the sender keeps transmitting periodial announement mes-sages to a well-known IP multiast group. It waits and ollets join requests from reeivers,and for eah request reeived, it spawns a thread that handles the three-way handshakeprotool entirely.Having the onnetion been suessfully established, onnetion maintenane (the phaseof atual data transmission) begins. Like with TCP Session Control, suspiions of hostrashes or network disonnetions are based on ontinuous exhange of polling requests andresponses. After sending a paket, the sender waits on a timer whih must be su�ientlylarge to allow a reeiver to reeive a paket, send an ACK, and suh an ACK arrive at thesender. When there is a timeout, the sender assumes that the paket or its orrespondingACK has been lost, and tries again. After a given number of onseutive retries, the sendersuspets the reeiver, the host or the network that onnets to it has failed, and onsidersthe onnetion to the reeiver to be broken (the reeiver is then removed from the group,and this ondition is reported to the upper layer).Sine nothing is assumed of the data generated by the appliation, there an be long periodsof inativity. To keep the onnetion alive, the sender periodially sends a request to eliit aresponse from a reeiver. A suspiion annot always be orret, as network loads and hene

RTTs annot be always aurately predited. So, false suspiions are possible and are evenated upon as the only way to ensure liveness in appliations. However, at the end of amultiast session, the sender an guarantee that the set of reeivers that have remained inthe session have reeived all data transmitted.A reeiver may also leave a session spontaneously. The sending upper layer will be informedthrough an exeption, but the session goes on if there exists at least one reeiver. In ontrast,new reeivers are not admitted in an ongoing session. To implement a join membershiphange during the multiast session, the group ommuniation system should open a newsession and lose the ongoing one. This will fore a synhronization.A onnetion tear-down an only be initiated by the sender. Reeivers are polled one more,to on�rm the reeipt of all pending data. This is done salably by the usual planning ofpoll request and responses.3.3 Error ControlAs already mentioned, paket loss detetion and reovery is based on an e�ient multiastsliding window sheme whih allows multiple data pakets to be outstanding in the network(see [3℄ for details). Sender and reeivers negotiate the window size at onnetion establish-ment. Eah entry of the window orresponds to a �xed-size data unit. Eah data unit isuniquely identi�ed by a sequene number and transported in data pakets. These may dropor reordered by the network. The reeiver suspets it missed a paket when it �nds a gapin the paket sequene. If polled, a reeiver sends a response whih will reprodue the gapto the sender (this orresponds to a NACK).Reliable multiast annot sale if all losses result in multiast retransmissions. So, a protoolmust balane when to retransmit with multiast and when with uniast. In PRMP, losses ofdata pakets reported are treated together. NACKs are olleted before a deision is maderegarding the way the retransmission is done. The sender deides to retransmit whenever ithas olleted su�ient NACKs to justify a multiast retransmission, or else it has olletedall NACKs and ACKs regarding the paket and there is no justi�ation for multiast (itsends via multiple uniasts).After sending a poll request, then sender waits on a timeout for reeiver responses. Thistimeout period, alled RTO (retransmission timeout) must be long enough to allow allreeivers responses to be reeived and treated. The RTO is �xed based on the sender'sestimate of RTTs so that premature retransmissions are avoided.3.4 Flow ControlPRMP prevents unneessary losses due to reeiver overrun. Pakets are delivered in FIFOorder to the upper layer. When pakets arrive at a reeiver, they are plaed in a bu�er aslong as there is spae. As in TCP, even though data may be ready for onsumption, theupper layer may not be. Therefore, unlike protools for bulk data transmission, a TCP-likemultiast servie must ope with the situation where the upper layer bloks for arbitrarilylong, and pakets �log up� in the reeive bu�er. In reeiver-initiated protools, the sender

may transmit pakets without feedbak from reeivers, and a large number of pakets mightbe disarded.PRMP is onservative, sine the sender only sends new pakets when it an guarantee thatall reeivers have enough spae to safely store the paket. Not a single paket is disardeddue to overrun; if the upper layer bloks or is slow, the bu�er will eventually �ll, and thespae reported (through responses) to the sender will prevent it from transmitting newpakets.3.5 Congestion ControlPRMP performs ongestion ontrol almost the same way as TCP. For this reason, we de-sribe brie�y Congestion Control in TCP. TCP uses a ongestion window whih restritsthe transmission of new data pakets by reduing the (value of) �available window� to nomore than w pakets. The value of w is additively inremented when pakets are pos-itively ACKed and multipliatively deremented when losses are deteted. In TCP, thisorresponds to a retransmission timeout event. At the start of the session, the value of wis set to 1 and inreased exponentially every RTT until a loss is deteted; this is alled slowstart (see [18℄ for details).To implement additive inrease, the sender must enlarge the window in 1 paket for eah fullwindow suessfully sent. This way the sender slowly probes for additional apaity, untilthe maximum window size is enountered, or a loss is deteted (there is a retransmissiontimeout). If there is a loss, w is reset to 1 and the protool enters slow start, duringwhih the value of w is inremented in 1 at eah ACK reeived, making the size of wdouble at eah RTT. Slow start stops when w reahes half its value when the loss ourred.Alternatively, if a tehnique alled fast reovery is used, there is no slow start phase afterlosses, and for eah timeout, w is redued in half.In PRMP, the ongestion window is one for all send windows. The value of w is inreasedwhen a data paket gets fully ACKed. When a paket gets NACKed for the �rst time, it isequivalent to a TCP timeout: the value of w is set to 1, and slow start begins.3.6 RequirementsHaving desribed PRMP ontrols, now we show how PRMP satis�es all TCP-like multiastservie requirements:(r1) it e�etively redues feedbak and avoids implosion, whih an be seen on the simula-tions presented in [2℄ and the pratial results shown later in Setion 5;(r2) it detets data paket losses through responses, and losses of poll requests and re-sponses through timeouts, being both are reovered through retransmissions;(r3) it has a lever Session Control mehanism whih allows the sender to (salably) keeptrak of the membership similarly to TCP;(r4) it fully prevents overrun losses sine the sender has enough information to arefullydeide when to send new data; and

(r5) it ahieves TCP-friendly multiast ongestion ontrol as it mimis the ongestion win-dow of TCP by monitoring full ACKs and �rst NACKs.4 Protool Arhiteture and Implementation4.1 Why JavaThe Java platform has proven to be to be a suitable environment for the developmentof PRMP. At �rst, the main fator leading against its hoie was the amount of systemresoures required by the JVM (Java Virtual Mahine), in terms of proessing and memoryonsumption, although this tends to be less of an issue as hardware evolves ([11℄). Onthe other hand, the Java language, API (Appliation Programming Interfae) and virtualmahine provides a onsistent environment for the implementation of a protool like PRMP.Its objet-oriented approah suited the modeling of the protool very well. Further, thebinary-level portability of Java ode is a great advantage when it omes to heterogeneousnetwork environments, suh as the Internet.In Java, the sokets API is available through a set of lasses3 that are distributed withthe Language implementation. Atually, Java eases the task of network programmingby extending basis soket lasses, providing useful abstrations. Two suh examples areTCP input/output streams and objet serialization (also known as marshaling). In par-tiular, PRMP employs DatagramSoket and DatagramPaket lasses, whih allow the re-ation/transmission/reeption of datagram pakets in a well strutured and simple manner.PRMP pakets an arry relatively omplex objets, like the sliding window ontained inresponse pakets. As datagram pakets an only transport raw bytes, the Java-providedSerializable4 interfae is used to marshal and unmarshall objets. An objet of a lass thatimplements this interfae an be onverted to a byte array that will ontain all informationabout the internal state of the objet. The array an be used to reassemble (unmarshall)the objet, reovering the original data. The main disadvantage of this sheme is the addedoverheads: the proessing overhead, due to the time spent serializing and de-serializingobjets, and the bandwidth overhead, due to the extra spae in pakets that is required tostore the struture and identi�ation of the lass of the objet being transmitted.Due to its sophistiated Controls, the PRMP sender is somewhat omplex. The omplex-ity is redued through a multi-threading arhiteture: onurrent threads interat throughqueues and tables, making use of monitors to avoid rae-onditions. Mutual exlusion isimplemented through the synhronizedmodi�er. Java has support for onurrent program-ming through a set of lasses to allow the reation/monitoring/elimination of threads, aswell as monitors.4.2 ArhitetureThe internal protool struture is ompletely based on objet orientation and onurrent pro-gramming. The omplexity is broken by using one di�erent synhronous thread to perform3http://java.sun.om/j2se/1.3/dos/api/java/net/pakage-frame.html4http://java.sun.om/j2se/1.3/dos/api/java/io/Serializable.html

eah of the main jobs. We identify four main jobs in the sender, namely: (i) transmission ofdata and poll pakets (inluding the planning of polls); (ii) reeption and handling of feed-bak pakets (and the assoiated loss detetion and reovery); (iii) handling of asynhronousevents (setting timers, aneling timers and treating timeouts); and (iv) interfaing with theupper-layer, inluding separation of data into bloks ready for transmission. Hene, thereare four threads.Figure 1 illustrates the overall arhiteture. The Generator Module (GM) interfaes withthe upper layer. The upper layer writes data to GM, whih �generates� and queues up datapakets for transmission in the Transmission Queue (TxQ). The Transmitter Module (TxM)reads from TxQ, performs the (re)transmissions of data and poll pakets, programmingtimeouts whenever poll requests are sent. To program a retransmission timeout, the TxMenqueues a new event in the Timeout Queue (ToQ). The Event Module (EM) reads fromToQ and is responsible for timeout handling; when so, EM enqueues re-polling requests inTxQ for TxM to handle. The Response Handler Module (RHM) reeives response paketssent by reeivers, aneling pending timeout events in ToQ when all responses expetedfrom a poll request have been reeived. Also, when a response is reeived from a givenreeiver, RHM updates the estimate of RTT for that reeiver and its orresponding sendwindow. When updating the send window, RHM may start error reovery: it detets a loss,ollets ACKs and NACKs, and when it eventually deides to retransmit a paket, it doesso enqueing the paket in TxQ. When all reeivers have positively ACKed and deliveredthe paket, RHM may slide forward the window, enabling GM to take more data from theupper-layer (end-to-end Flow Control).
Upper-layer

TxM

GM

EM

to transmit
enqueue packets

TxQ

RHM

free GM to take more data (open window)

enqueue data packet retransmission

enqueue event

enqueue poll request retransmission

treat event

DATA/DATAPOLL
POLL packets

N e t w o r k

...RM RM3RMRM 21 N

ToQ

RESP packets

cancel event

Figure 1: Protool internal arhiteture.

5 Experimental ResultsThis setion presents the results obtained from a set of pratial experiments we have on-duted with PRMP and two other protools: multiple TCP streams and the Full Feedbakprotool. As the name indiates, the multiple TCP streams sheme emulates multiastthrough N � 1 TCP streams. Beause TCP has built-in Error, Flow, Congestion and Ses-sion Controls ([18℄), the sender may simply send (write to a stream) and forget. A �multiastpaket� is sent by writing the required number of bytes N � 1 times, one for eah stream.The seond alternative is the Full Feedbak protool (see [2℄), or simply �FF�. All data pak-ets are sent via IP multiast. FF is a reliable multiast protool with sliding window Errorand Flow Controls, in whih reeivers send ACKs for eah paket reeived (this protool isa similar, but slightly wiser, version of the A protool found in [20℄).5.1 Experiment SettingsThe frequeny and size of messages generated by the group ommuniation system willdepend on the partiular appliation. Therefore, one should not make assumptions abouttransmission bursts, average message size and so on. In our tests, we hose to emulate agroup ommuniation system for a symmetri, losed group model of N nodes that behavesynhronously (see below). Eah �appliation node� transmits and reeives messages to theother N � 1 nodes and is implemented through a multi-threaded Java program omprisedof 1 sender and N � 1 loal reeivers.The group omputation advanes in �rounds�, similarly to the synhronous model desribedby Lynh ([14℄): a round onsists of sending a message to neighbors (in this ase, everyone),reeiving one message from eah neighbor (everyone), and then proessing messages to makea state transition. These messages are of the type data and have size S bytes. A nodesends a data message to the group, waits until N � 1 data messages are reeived from itspeers, and then spends a random time (uniform distribution between 0 and Tp ms) while�proessing� the messages. Eah node performs M of the above rounds, and then graefullyloses its session.An external �oordinator� ontrols the experiment and ollets output information. Theexperiments starts with eah node establishing a �multiast session� with the other N � 1members, resulting in a full mesh5. After establishing a session, a node sends a readymessage to the oordinator; when the oordinator has olleted all ready messages, itsends a start message to all nodes, whih then start the �rst round.In the tests, we �xed the amount of data to be transmitted by eah node in 1; 000; 000bytes. We performed two sets of experiments, one using a message size S of 1000 bytes(thus M was 1000 rounds), and another using a message size S of 4000 bytes (thus M was250 rounds). Tp was set to 100 ms (mean 50 ms). This means that eah group node willsend to the group either 1000 or 250 messages of 1000 or 4000 bytes eah, respetively, andthat at end of the session a node will have reeived 1; 000; 000 � (N � 1) bytes of data.Messages of size S will be transported by PRMP and FF in pakets of 1000 bytes; therefore,5with multiple TCP stream protool, onnetions are bi-diretional and so N(N � 1)=2 streams arerequired.

a message may trigger the sending of 1 or 4 data pakets, plus at least one feedbak paket.(In multi-TCP, the paket size will vary.) Eah protool will therefore generate a �ow offeedbak pakets. In PRMP suh �ow was restrited by setting the parameter ResponseRate (RR) to 20 responses/se. That is, eah sender (at eah node) will ontrol feedbaksuh that no more than 20 response pakets are reeived per seond. However, a node willalso reeive messages (i.e., data pakets) from N � 1 nodes. FF and multi-TCP do notontrol the amount of feedbak.The experiments were run in a ontrolled environment. Although the on�guration wasa Loal Area Network omprised of around 70 PCs, in the tests we employed a subsetof 10 mahines equally-equipped: PC Pentium III-450MHz with 64 MB of RAM, and FastEthernet boards used however in ordinary Ethernet mode (10 Mbps). The operating systemwas GNU/Linux v.2.2.14, and the development/runtime environment was Sun JDK v.1.3.In order to evaluate PRMP and ompare it with FF and multi-TCP, we hose two metris:T , de�ned as the �total time�, and C, the �total network ost� in bytes. Below, these metrisare explained along with the experiment and result desription.5.2 Total TimeThe total time T i at eah node i is measured as the time between the delivery (to the upperlayer) of the start message and the last of all N �1 messages of the round M . The overall,total time T is the largest T i reorded among all nodes, that is, maximum T i. Figure 2presents the total time T (in seonds) in funtion of N , for S = 1000 (left) and S = 4000(right). In both graphs, we show a urve that orresponds to the minimum time T , a lowerbound on T alulated as the sum of all proessing times Tp. Sine average Tp was setto 50 ms, T ould never be less than 50 seonds for M = 1000 rounds and 12:5 seondsfor M = 250 rounds. In other words, the best result for T would only be ahievable withinstantaneous opy of messages among remote nodes.
0

100

200

300

400

500

600

700

2 3 4 5 6 7 8 9 10

T
ot

al
 T

ra
ns

m
is

si
on

 T
im

e
(s

ec
.)

Number of Nodes

PRMP
FF

TCP
Min. Time

0

20

40

60

80

100

120

140

160

180

2 3 4 5 6 7 8 9 10

T
ot

al
 T

ra
ns

m
is

si
on

 T
im

e
(s

ec
.)

Number of Nodes

PRMP
FF

TCP
Min. Time

Figure 2: Total time T in seonds in funtion of N , for N = 2 to 10, with S = 1000 bytes(left) and S = 4000 bytes (right).First ompare the sale on the two graphs of Figure 2. Note that although the results areonsistent between the two, the performane on the right (S = 4000) is muh higher thanon the left, whih ours beause group synhronization on the right takes plae 4 times less

frequently. In other words, if S = 4000, a node an send 4 pakets of 1000 bytes withouthaving to wait for the next round6.Note also that, for any protool, T is expeted to grow with N . There are reasons for this:the volume of data being transferred grows exponentially with N , and so does the ombinedprobability of a reeiver experiening a paket loss in any single multiast transmission.Additionally, sine in eah round a node will reeive N�1messages, more and more messagesneed to be delivered to the upper layer.As it an be seen in Figure 2, the multi-TCP sheme presented the worst performaneof all: its time T grows exponentially with N . This is mainly due to the fat that themulti-TCP approah requires eah message to be transmitted N�1 times over the network,with two impliations. First, the sending of pakets takes time, in partiular larger datapakets. Seond, the amount of tra� grows heavily and will ause losses, whih on theirturn will require loss detetion and reovery. For TCP, Congestion Control will also a�etperformane for S = 4000, as the ongestion window will be redued to 1 segment aftereah loss; this prevents a network ollapse. Like TCP, the time required for FF also growsexponentially. However, unlike TCP, FF will try to reover from losses by re-multiastingpakets, whih is equivalent to trying to �put o� a �re with gasoline�. That is why the FFurve in the graphs are inomplete: all experiments for N > 5 with S = 1000 or N > 4with S = 4000 led to network ollapse, being aborted after several minutes of no progressbeing reorded at all. In ontrast to multi-TCP and FF, the time T of PRMP grows slowlywith N , from 80 to 120 se as N inreases 5 times. These results demonstrate that PRMPremains e�ient as N grows, in partiular if one onsiders the inreasing host load andombined probability of loss that a protool must ope with.5.3 Network Cost (bandwidth)The ost Ci is the total number of bytes passed by the protool to UDP for transmission(via multiast or uniast), either data or feedbak pakets, and onsiders all the overheadinluded by Java objet serialization. Note that Ci intentionally bene�ts multiast: thenumber of bytes in a multiast transmission is the same of uniast. The overall C, presentedin the graphs, is the sum of all Ci's.Figure 3 shows in log sale the network ost N measured in Mbytes, for all three protools.It also shows, for the sake of omparison, an optimal ase (�optimum�). The optimum urveis a lower bound on the bandwidth onsumption: it onsiders only the data transmittedby the upper layer, without any protool overhead suh as headers and feedbak pakets.The Ci for a given node i annot be less than the amount to be transmitted by eahnode: 1; 000; 000 bytes (nearly 1 Mbyte). The overall C for the optimum urve is thereforeN � 1; 000; 000 bytes, or 9:5 Mbytes for N = 10.The network ost shown for multi-TCP in Figure 3 is also an optimisti value. Sine the ostC for the multi-TCP protool ould not be measured without using kernel-level tools, C formulti-TCP represents a lower bound, adding only an overhead of 20 bytes (TCP header)for eah message transmitted to a node (this number would be greater for S = 4000 bytes,where more than 1 paket would be neessary to transport eah of the 250 messages).6subjet to the sliding window of the protool underneath.

1

2

4

8

16

32

64

128

256

512

2 3 4 5 6 7 8 9 10

T
ot

al
 N

et
w

or
k

C
os

t (
M

B
yt

es
)

Number of Nodes

PRMP
FF

TCP
optimum

1

2

4

8

16

32

64

128

2 3 4 5 6 7 8 9 10

T
ot

al
 N

et
w

or
k

C
os

t (
M

B
yt

es
)

Number of Nodes

PRMP
FF

TCP
optimum

Figure 3: Network ost C in Mbytes in funtion of N , for N = 2 to 10, for S = 1000 bytes(left) and S = 4000 bytes (right).First note that, as for time T , the ost C presented on the graph on the left (S = 1000) arehigher than those on the right (S = 4000). This is beause 4 times more feedbak paketswill be required when S = 1000 (exept for TCP, whih may piggybak ACKs). Note alsothat the Y axis is in log sale.Seond, note that the unsalable nature of FF, without Implosion Control, appears learlyin the results; in Figure 3 (left), to transfer approximately N Mbytes, FF ost grows aggres-sively from 5 to 300 Mbytes when group size grows from 2 to 5. The multi-TCP approahis more eonomial than PRMP for N = 2, and similar for N = 3 or 4. This is beausethe multi-TCP approah was designed to take advantage of the fat that TCP streams arebi-diretional: with 2 nodes only, there is a single onnetion and no overhead (in fat, it isTCP traditional point-to-point ommuniation!) For larger groups, multi-TCP demands onnetwork tra� grow autely, whih is explained by the fat that eah node must send thesame data N � 1 times. PRMP, instead, presents a network ost that remains onsistentlyhigher than the optimum, but proves to be substantially better than the other alternatives.6 Conluding RemarksThe main ontributions of this paper are (i) to speify whih are the requirements for aTCP-multiast servie, an assumption of some group ommuniation systems; (ii) to showhow our protool, PRMP (presented in [2℄) satis�es all these requirements; (iii) to providean arhiteture and implementation for PRMP in Java; and (iv) to show pratial resultstaken from an experimental evaluation with the implementation.Unlike other �salable reliable multiast protools�, PRMP does not trade o� reliability,performane or network ost for unlimited salability. The TCP-multiast servie is thelayer over whih group ommuniation systems an be built. Multiple TCP onnetions areine�ient and restrited to a few reeivers; broadast is wasteful and does not sale.Other salable reliable multiast protools are not suitable for group ommuniation supportbeause they emphasize salability to the extreme, negatively a�eting other aspets, andtypially assume a bulk data dissemination. PRMP is the �rst protool to attak all TCP-

like multiast requirements together. Unlike other salable reliable multiast protools, inPRMP the sender maintains the membership information and uses this information for thebene�t of other mehanisms. A multiast protool annot provide �end-to-end reliability�unless a sender knows and ontrols the membership set it is transmitting to. Indeed, PRMPbene�ts from keeping reeiver's state in several ways: (a) it an avoid implosion, by planningarrival of feedbak pakets; (b) it an e�iently detet and reover from paket losses; () ituses up-to-date RTT estimates to make fewer mistakes while suspeting reeiver failures; (d)it does not make assumptions regarding the tra� generated by the appliation; (e) it doesnot require in�nite bu�ers to deliver all data to all reeivers in the session; (f) it preventsunneessary losses by overrun; (g) it uses a ongestion window to perform TCP-friendlyCongestion Control.To illustrate our point, we have desribed a PRMP implementation in Java and disussed itsperformane. The results indiate that PRMP presents muh lower network ost and betterthroughput than the most ommonly used alternatives. In absolute terms, we expet theperformane results for PRMP presented here may be inreased by a fator of 10 if PRMPis re-implemented in C or C++ ([11℄).In this paper, we were able to exeute experiments in a single LAN. Performing pratialexperiments with multiast appliations using several networks has been very di�ult formany reasons. First, it requires many other people/institutions to ollaborate in the test.Seond, a multiast transmission might easily swamp the network with exessive tra�.Third, multiast must be enabled in all networks involved, and speially in the links inter-onneting them (like with IP multiast tunnels). Finally, experiments should be onduted�out of hours� in order to redue the likelihood of extraneous tra�.Nonetheless, as future work, we plan to extend our experiments to inlude several networks.Even though it has been already shown that PRMP works well for suh on�gurations (see[3℄), and that it an deal properly with heterogeneous RTTs, we would like to present anexperimental evaluation to validate the use of PRMP in supporting group ommuniationsystems over sparsely distributed, large groups.Referenes[1℄ O. Babaoglu, A. Bartoli and G. Dini, �Group Membership and View Synhrony in PartitionableAsynhronous Distributed Systems�, IEEE Transations on Computers, v.46, n.6, June 1997,pp. 642-658.[2℄ M. Barellos and P. D. Ezhilhelvan, �An End-to-End Reliable Multiast Protool Using Pollingfor Salability�, In IEEE INFOCOM'98, San Franiso, April 98, pp.1180-1187.[3℄ M. Barellos, �PRMP: Poll-based Saleable Reliable Multiast Protool�, Ph.D. Thesis, Uni-versity of Newastle, Newastle upon Tyne, Ot. 1998, 200p.[4℄ K. Birman, �Building Seure and Reliable Network Appliations�, Manning: Prentie Hall,1996. 500p.[5℄ R. Budhia, �Performane Engineering of Group Communiation Protools�, Ph.D. Dissertation,University of California at Santa Barbara, Eletrial and Comp. Eng., Aug. 1997, 169p.

[6℄ S. Deering and D. Cheriton, �Multiast Routing in Datagram Internetworks and ExtendedLANs�, ACM Transations on Computer Systems, pp.85-111, May 1990.[7℄ D. Dolev and D. Malki, �The Transis Approah to High Availability Cluster Communiation�,Communiations of the ACM, v.39, n.4, April 96, pp. 64-70.[8℄ P. Ezhilhelvan, R. Maedo, and S. Shrivastava, �Newtop: A Fault-Tolerant Group Communi-ation Protool�. In IEEE 15th Intl. Conf. Distributed Computing Systems, pp.296-306, May1995.[9℄ P. Felber, R. Guerraoui and A. Shiper, �The Implementation of CORBA Objet Servie�,Theory and Pratie of Objet Systems, v.4, n.2, 1998, pp. 93-105.[10℄ S. Floyd, V. Jaobson, S. MCanne, C. Liu and L. Zhang, �A Reliable Multiast Frameworkfor Light-Weight Sessions and Appliation Level Framing�, IEEE/ACM Transations on Net-working, v.5, n.6, De. 1997, pp. 784-803.[11℄ B. Krupzak, K. Calvert, M. Ammar, "Implementing Protools in Java: The Prie of Porta-bility", In IEEE INFOCOM'98, San Franiso, April 98.[12℄ B. Levine, J.J. Garia-Luna-Aeves, �A omparison of known lasses of reliable multiast pro-tools�, In IEEE International Conferene on Network Protools, 1996, pp112-121.[13℄ C. Liu, P. Ezhilhelvan, and M. Barellos, �A Multiast Transport Protool for Reliable GroupAppliations�, Leture Notes in Computer Siene, 1736. (First International Workshop onNetworked Group Communiation - NGC'99). Springer-Verlag, 1999, pp.170-187.[14℄ N. Lynh, �Distributed Algorithms�, Morgan Kaufmann, San Franiso, 1996, 872p.[15℄ G. Morgan, S. K. Shrivastava, P. D. Ezhilhelvan and M. C. Little, �Design and Implementa-tion of a CORBA Fault-Tolerant Group Servie�, In 2nd IFIP WG 6.1 International WorkingConferene on Distributed Appliations and Interoperable Servies, Helsinki, June 99.[16℄ S. Paul, �Multiasting on the Internet and Its Appliations�, Kluwer Aademi Publishers,421p., 1998.[17℄ R. V. Renesse, K. P. Birman and S Ma�eis, �HORUS: A �exible Group Communiation Sys-tem�, Comm. of the ACM, v.39, n.4, April 96, pp. 76-83.[18℄ W. R. Stevens, �TCP/IP Illustrated, Vol. 1: The Protools�. Chapter 21: TCP Timeout andRetransmission, Addison-Wesley Professional Computing Series, Addison-Wesley, 1994.[19℄ R. Talpade and M. H. Ammar, "Single Connetion Emulation (SCE): An Arhiteture forProviding a Reliable Multiast Servie", In 15th IEEE International Conferene on DistributedComputing Systems (ICDCS95), Vanouver, Canada, June 95, pp. 144-152.[20℄ D. Towsley, J. Kurose, and S. Pingali, �A Comparison of Sender-Initiated and Reeiver-InitiatedReliable Multiast Protools�, IEEE Journal of Seleted Areas in Communiations, v.15, n.3,pp.398-406, 1997.[21℄ M. Yajnik, J. Kurose, and D.Tosley, �Paket Loss Correlation in the Mbone Multiast Net-work�, UMCASS CMPSCI Tehnial Report, 96-32.

