
E�
ient TCP-like Multi
ast Support forGroup Communi
ation Systems
Marinho P. Bar
ellos André Dets
hHisham H. Muhammad Guilherme B. BedinPIP/CA - Programa de Pós-Graduação em Computação Apli
adaC6 - Centro de Ciên
ias Exatas e Te
nológi
asUNISINOS - Universidade do Vale do Rio dos SinosSão Leopoldo/RS, CEP 93022-000 - Brazilhttp://www.inf.unisinos.br/�marinhoAbstra
tThe availability of a �TCP-like multi
ast servi
e� is a
ommon assumption amonggroup
ommuni
ation proto
ols. This assumption has been ine�
iently satis�ed througheither multiple TCP
onne
tions or broad
asting. In this paper, we spe
ify the require-ments for su
h TCP-like multi
ast servi
e, and then present a s
alable reliable multi
astproto
ol,
alled prmp, that satis�es these requirements. prmp allows a group
ommu-ni
ation proto
ol to provide high-level servi
es e�
iently and s
alably for fault tolerantappli
ations. We des
ribe the ar
hite
ture used to implement prmp in Java, and howthis implementation was used to perform a set of pra
ti
al experiments simulating group
ommuni
ation. Experimental results show that prmp outperforms two other alterna-tives, while still presenting less network
ost.keywords: reliable multi
ast, group
ommuni
ation, TCP.1 Introdu
tionBuilding group
ommuni
ation systems
apable of tolerating site
rashes and network par-titions has been under investigation for several years. Useful, programming paradigms su
has virtual syn
hrony (VS) have been spe
i�ed ([1℄). An e�
ient implementation of theseabstra
tions
an be obtained if an underlying one-to-many �TCP-like multi
ast servi
e�1 isavailable. Histori
ally, su
h servi
e has been implemented through multiple TCP streams(e.g., Newtop [8℄, [15℄ and Phoenix [9℄). Some other systems, like Transis ([7℄, [5℄), are basedon unreliable link-layer multi
ast/broad
ast. Neither approa
h s
ales well, wasting network1although we use the term �servi
e�, one
ould employ �layer� or �abstra
tion� as well.

bandwidth and host resour
es, sin
e broad
asting is limited to LANs, and multiple TCP
onne
tions require many
opies of the same pa
ket to be redundantly transmitted over thesame
ommuni
ation
hannels. For
ommuni
ation over the Internet, this is una�ordable.Group
ommuni
ation in the Internet is only feasible through IP multi
ast (see [6℄). IPmulti
ast is
apable of e�
ient and s
alable pa
ket delivery: pa
kets are routed throughmultiple networks a

ording to a multi
ast tree, built using a multi
ast routing proto
ol(e.g., DVMRP or PIM). A pa
ket only traverses an edge on
e. Using IP multi
ast, a peernode may send pa
kets to a given network address (IP
lass D), without having to (orbeing able to) determine the exa
t membership of the set. Several group
ommuni
ationproto
ols, su
h as Horus ([17℄),
laim to be able to take advantage of IP multi
ast, eventhough s
alability issues su
h as feedba
k implosion are not addressed ([4℄).In this paper, we des
ribe a �s
alable reliable multi
ast proto
ol�
alled Polling-based Re-liable Multi
ast Proto
ol (PRMP), whi
h e�
iently implements the TCP-like multi
astservi
e required by group
ommuni
ation systems. Note that our purpose is not to pro-pose a new group
ommuni
ation proto
ol, whi
h is more e�
ient, more s
alable, or both,but instead to support other group
ommuni
ation systems by providing the often requiredTCP-like multi
ast servi
e they assume to exist.The rest of this paper is organized as follows. In Se
tion 2, we introdu
e the
on
ept of theTCP-like multi
ast servi
e by de�ning the set of requirements. In Se
tion 3 we dis
uss thePRMP
ontrols and how they are used to satisfy the requirements. Experimental evaluationresults are given in Se
tion 4, whi
h are followed by
on
luding remarks in Se
tion 5.2 TCP-like Multi
astAs already mentioned, the feasibility of group
ommuni
ation proto
ols in the Internetdepends on the use of IP multi
ast, for IP multi
ast is required to e�
iently distributepa
kets along a tree of routers and re
eivers. Unfortunately, IP multi
ast may silently droppa
kets along the network. Further, pa
kets may be dupli
ated, arrive of out order, or elsesu�er extreme delays. A pa
ket drop may result in many re
eivers experien
ing a given loss(see [21℄ for a study on spatial and temporal loss
orrelation in the Mbone). To deal withsu
h events, basi
 Error Control te
hniques may be used. The simplest approa
h to lossre
overy is a multi
ast stop-and-wait s
heme, whi
h works as follows. The sender sends apa
ket using IP multi
ast; upon re
eipt, ea
h re
eiver uni
asts a positive a
knowledgment(ACK) to the sender. The sender waits on a timer, expe
ting one ACK from ea
h of there
eivers (as long as the sender knows who are the re
eivers). If all ACKs arrive withinexpe
ted time, the sender
an transmit a new data pa
ket. Otherwise, the timer expiresand the sender re-transmits the pa
ket via multi
ast. This proto
ol is ine�
ient be
ause ittransmits a single pa
ket per round-trip-time (RTT). A multi
ast sliding window ([2℄)
anbe added to su
h proto
ol, allowing the sender to transmit several pa
kets before waitingfor any ACKs. A proto
ol where the sender sets a timer and expe
ts ACKs from re
eivers is
alled sender-initiated ([20℄). One su
h example is the Single Conne
tion Emulation (SCE),an attempt to hide multi
ast behind TCP interfa
e [19℄. Sender-initiated proto
ols do nots
ale well be
ause of the well-known problem of feedba
k implosion. Later in the paper, weshow in pra
ti
e how badly this kind of proto
ol performs (see �FF� in Se
tion 5).

Newer proto
ols have been devised with s
alability in mind, redu
ing the amount of feed-ba
k required. Several Implosion Control s
hemes have been introdu
ed (see [16℄ for someexamples). In general, these newer proto
ols attempt to make throughput,
ost and (sender)state independent of group size. Be
ause error re
overy responsibility lies with the re
eivers,they are often
alled re
eiver-initiated ([20℄). The design of the proto
ol trades o� reliability(and performan
e) for s
alability. There is no me
hanism to keep tra
k of membership: thesender remains unaware of how many re
eivers exist and their identity. Re
eivers join thegroup by subs
ribing to the proper IP multi
ast address. Network topology is harnessedthrough hierar
hy: re
eivers are logi
ally organized so that some a
t as re-transmitters fornearby re
eivers (lo
al re
overy). This model is highly s
alable, and has been su

essfullyused for one-to-many bulk dissemination of data and �semi-reliable� transmission of mul-timedia
ontents. However, be
ause no state about re
eivers is maintained at the sender,re
eiver-initiated proto
ols
annot provide �end-to-end reliability� that is expe
ted from theTCP-like multi
ast servi
e required by group
ommuni
ation proto
ols. Further, [12℄ showsthat these proto
ols require in�nite bu�ers in order to prevent deadlo
ks.Below, we identify a set of requirements for the TCP-like multi
ast servi
e, based on whatTCP
onne
tions o�er and what group proto
ols assume to be available. The requirementsare:(r1) the proto
ol must
ontrol the level of feedba
k sent by re
eivers so to avoid feedba
kimplosion;(r2) end-to-end �reliable� transmission of a datagrams (or bytes of a stream) to multiplere
eivers, dete
ting pa
ket losses and re
overing from them in order to mask omissions,dupli
ations and re-orderings;(r3) initial multi
ast group setup and
ontrol, dete
ting host
rashes and persistent networkpartitions and mapping them as �
onne
tion breaks�;(r4) manage �nite bu�ers at sender and re
eivers, also preventing unne
essary pa
ket lossesdue to re
eiver overrun; and in the
ase
ommuni
ation takes pla
e over Wide AreaNetwork (WAN) links,(r5) help alleviating
ongestion in bottlene
k routers within the network in a way that is�TCP-friendly�).The above requirements2 make a di�
ult task to provide a TCP-like multi
ast servi
e. IPmulti
ast was introdu
ed around 1990 ([6℄), but still nowadays all of the above requirementsfor reliable multi
ast are yet to be satis�ed in the same proto
ol. This is mainly be
ausemost resear
h on s
alable reliable multi
ast has attempted to
ome up with proto
ols thatwill s
ale to very large number of re
eivers, and whose performan
e and
ost are independentof group size. To a
hieve this, the sender
annot
ontrol membership. So, most resear
hon the �eld of s
alable reliable multi
ast proto
ols have adopted re
eiver-initiated models,for the sake of improved s
alability. Below we dis
uss why su
h proto
ols fail to satisfy theabove requirements.2Multimedia appli
ations exhibit a requirement whi
h is not
overed by TCP: soft real-time delivery.

First, re
eiver-initiated proto
ols tend to satisfy (r1), as they avoid implosion throughNACK-based Error Control, Forward Error Corre
tion and/or hierar
hy. However, as shownin [12℄, they
an only satisfy (r2) as long as that they have in�nite bu�ers and session time.They do not satisfy (r3), be
ause even though some proto
ols might
ount with a �loose�Session Control (e.g., SRM [10℄), the (unreliable) group membership must remain hiddenat the IP multi
ast layer. They also do not satisfy (r4), sin
e the sender
annot safelypredi
t bu�er availability at re
eivers (Flow Control in this
ase �u
tuates the sending rateto attempt to redu
e overrun losses). Finally, it is hard to satisfy properly requirement(r5), be
ause TCP Congestion Control is sender-initiated (and sin
e this is fundamentalfor Internet stability, new s
hemes for
ongestion
ontrol for reliable multi
ast are beingintensely investigated).We
on
lude de�ning a TCP-like multi
ast servi
e as a one-to-many proto
ol that wouldful�ll all the requirements above.3 PRMP Proto
ol ControlsPRMP has been des
ribed elsewhere ([2℄, [3℄, [13℄); in this se
tion, we provide an overallview and elaborate on how PRMP meets the �ve requirements through its
orresponding
ontrols.Data is pla
ed in data pa
kets and transmitted via IP multi
ast to re
eivers. Sender andre
eivers keep a sliding window,
alled send and re
eive window, respe
tively; the sendermarks in the send window whi
h data pa
kets have been positively ACKed and by whi
hre
eivers, a

ording to the feedba
k (response pa
kets) it re
eives. To avoid feedba
k im-plosion, the sender uses polling to
ontrol the amount of feedba
k generated by re
eivers:only when prompted by a polling request, a re
eiver
an uni
ast a response
ontaining itsstatus (ACKing and NACKing several data pa
kets at on
e). When a response arrives at thesender, the send window is updated, and loss dete
tion and re
overy takes pla
e. The senderdete
ts data pa
ket losses through NACKs
ontained in the responses sent by re
eivers afterpoll requests. Re
overy is a
hieved by means of retransmissions, whi
h may be either by(multiple) uni
ast operations or a single multi
ast, depending on the number of
opies tobe retransmitted. Poll requests and responses may be lost too, and their loss is dete
tedby the sender through timeouts. If so, the sender re-sends a polling request and sets anew, enlarged timer to wait for a response; the pro
ess is repeated until either a response isre
eived or the sender gives up on the re
eiver and removes it from the session. The re
eivewindow slides forward a

ording to the re
eipt of data pa
kets, and their (in FIFO order)
onsumption by an upper layer (appli
ation or group
ommuni
ation system). The sendwindow slides forward a

ording to responses from re
eivers, allowing the transmission ofnew data. This me
hanism di
tates that a new data pa
ket
an only be transmitted if thesender
an guarantee that the pa
ket
an be safely re
eived and stored in re
eiver's bu�ers.Below, we brie�y des
ribe ea
h of the
ontrol me
hanisms.

3.1 Implosion ControlThe Implosion Control me
hanism of PRMP is based on a poll-planning s
heme: the senderplans when responses should arrive so that they are uniformly distributed in time, and donot ex
eed a given rate. To
ontrol the arrival time of responses, the sender uses the RTTup to re
eivers and adjusts the time in whi
h requests are sent (delay transmissions).Time ahead is divided in epo
hs, periods of equal length. The purpose of the poll planningme
hanism is to s
hedule a maximum number responses per epo
h. To keep tra
k of s
hed-uled responses, it employs a ve
tor, whose entries
ount the number of responses expe
tedper epo
h. Whenever an epo
h is full, the me
hanism �nds the next �available� epo
h in thefuture able to a

ept a new response. When so, the transmission of the request is delayeda

ordingly.To save bandwidth, the me
hanism is designed so that, if possible, a poll request is sentpiggyba
ked onto a data pa
ket. Further, poll requests are sent on demand: when there isno data to be ACKed, or Session Control to be performed, the sender does not send pollrequests unne
essarily.3.2 Session ControlSession Control has typi
ally three phases:
onne
tion establishment,
onne
tion manage-ment and
onne
tion tear-down. In PRMP, the
onne
tion establishment is responsible forestablishing
onta
t between sender and re
eivers. Like TCP, PRMP uses the three-wayhandshake s
heme ([18℄). PRMP has two
onne
tion establishment models: invitation andannoun
ement. In the former, the sender takes a list of re
eivers (IP addresses and ports to
onta
t) and spawns a given number of threads, whi
h
ontinuously employ the three-wayhandshake until all re
eivers on the list have been
onta
ted or given up. The number of
on-
urrent threads represent a tradeo� between e�
ien
y and s
alability. In the announ
ementmodel, for a given time length, the sender keeps transmitting periodi
al announ
ement mes-sages to a well-known IP multi
ast group. It waits and
olle
ts join requests from re
eivers,and for ea
h request re
eived, it spawns a thread that handles the three-way handshakeproto
ol entirely.Having the
onne
tion been su

essfully established,
onne
tion maintenan
e (the phaseof a
tual data transmission) begins. Like with TCP Session Control, suspi
ions of host
rashes or network dis
onne
tions are based on
ontinuous ex
hange of polling requests andresponses. After sending a pa
ket, the sender waits on a timer whi
h must be su�
ientlylarge to allow a re
eiver to re
eive a pa
ket, send an ACK, and su
h an ACK arrive at thesender. When there is a timeout, the sender assumes that the pa
ket or its
orrespondingACK has been lost, and tries again. After a given number of
onse
utive retries, the sendersuspe
ts the re
eiver, the host or the network that
onne
ts to it has failed, and
onsidersthe
onne
tion to the re
eiver to be broken (the re
eiver is then removed from the group,and this
ondition is reported to the upper layer).Sin
e nothing is assumed of the data generated by the appli
ation, there
an be long periodsof ina
tivity. To keep the
onne
tion alive, the sender periodi
ally sends a request to eli
it aresponse from a re
eiver. A suspi
ion
annot always be
orre
t, as network loads and hen
e

RTTs
annot be always a

urately predi
ted. So, false suspi
ions are possible and are evena
ted upon as the only way to ensure liveness in appli
ations. However, at the end of amulti
ast session, the sender
an guarantee that the set of re
eivers that have remained inthe session have re
eived all data transmitted.A re
eiver may also leave a session spontaneously. The sending upper layer will be informedthrough an ex
eption, but the session goes on if there exists at least one re
eiver. In
ontrast,new re
eivers are not admitted in an ongoing session. To implement a join membership
hange during the multi
ast session, the group
ommuni
ation system should open a newsession and
lose the ongoing one. This will for
e a syn
hronization.A
onne
tion tear-down
an only be initiated by the sender. Re
eivers are polled on
e more,to
on�rm the re
eipt of all pending data. This is done s
alably by the usual planning ofpoll request and responses.3.3 Error ControlAs already mentioned, pa
ket loss dete
tion and re
overy is based on an e�
ient multi
astsliding window s
heme whi
h allows multiple data pa
kets to be outstanding in the network(see [3℄ for details). Sender and re
eivers negotiate the window size at
onne
tion establish-ment. Ea
h entry of the window
orresponds to a �xed-size data unit. Ea
h data unit isuniquely identi�ed by a sequen
e number and transported in data pa
kets. These may dropor reordered by the network. The re
eiver suspe
ts it missed a pa
ket when it �nds a gapin the pa
ket sequen
e. If polled, a re
eiver sends a response whi
h will reprodu
e the gapto the sender (this
orresponds to a NACK).Reliable multi
ast
annot s
ale if all losses result in multi
ast retransmissions. So, a proto
olmust balan
e when to retransmit with multi
ast and when with uni
ast. In PRMP, losses ofdata pa
kets reported are treated together. NACKs are
olle
ted before a de
ision is maderegarding the way the retransmission is done. The sender de
ides to retransmit whenever ithas
olle
ted su�
ient NACKs to justify a multi
ast retransmission, or else it has
olle
tedall NACKs and ACKs regarding the pa
ket and there is no justi�
ation for multi
ast (itsends via multiple uni
asts).After sending a poll request, then sender waits on a timeout for re
eiver responses. Thistimeout period,
alled RTO (retransmission timeout) must be long enough to allow allre
eivers responses to be re
eived and treated. The RTO is �xed based on the sender'sestimate of RTTs so that premature retransmissions are avoided.3.4 Flow ControlPRMP prevents unne
essary losses due to re
eiver overrun. Pa
kets are delivered in FIFOorder to the upper layer. When pa
kets arrive at a re
eiver, they are pla
ed in a bu�er aslong as there is spa
e. As in TCP, even though data may be ready for
onsumption, theupper layer may not be. Therefore, unlike proto
ols for bulk data transmission, a TCP-likemulti
ast servi
e must
ope with the situation where the upper layer blo
ks for arbitrarilylong, and pa
kets �
log up� in the re
eive bu�er. In re
eiver-initiated proto
ols, the sender

may transmit pa
kets without feedba
k from re
eivers, and a large number of pa
kets mightbe dis
arded.PRMP is
onservative, sin
e the sender only sends new pa
kets when it
an guarantee thatall re
eivers have enough spa
e to safely store the pa
ket. Not a single pa
ket is dis
ardeddue to overrun; if the upper layer blo
ks or is slow, the bu�er will eventually �ll, and thespa
e reported (through responses) to the sender will prevent it from transmitting newpa
kets.3.5 Congestion ControlPRMP performs
ongestion
ontrol almost the same way as TCP. For this reason, we de-s
ribe brie�y Congestion Control in TCP. TCP uses a
ongestion window whi
h restri
tsthe transmission of new data pa
kets by redu
ing the (value of) �available window� to nomore than
w pa
kets. The value of
w is additively in
remented when pa
kets are pos-itively ACKed and multipli
atively de
remented when losses are dete
ted. In TCP, this
orresponds to a retransmission timeout event. At the start of the session, the value of
wis set to 1 and in
reased exponentially every RTT until a loss is dete
ted; this is
alled slowstart (see [18℄ for details).To implement additive in
rease, the sender must enlarge the window in 1 pa
ket for ea
h fullwindow su

essfully sent. This way the sender slowly probes for additional
apa
ity, untilthe maximum window size is en
ountered, or a loss is dete
ted (there is a retransmissiontimeout). If there is a loss,
w is reset to 1 and the proto
ol enters slow start, duringwhi
h the value of
w is in
remented in 1 at ea
h ACK re
eived, making the size of
wdouble at ea
h RTT. Slow start stops when
w rea
hes half its value when the loss o

urred.Alternatively, if a te
hnique
alled fast re
overy is used, there is no slow start phase afterlosses, and for ea
h timeout,
w is redu
ed in half.In PRMP, the
ongestion window is one for all send windows. The value of
w is in
reasedwhen a data pa
ket gets fully ACKed. When a pa
ket gets NACKed for the �rst time, it isequivalent to a TCP timeout: the value of
w is set to 1, and slow start begins.3.6 RequirementsHaving des
ribed PRMP
ontrols, now we show how PRMP satis�es all TCP-like multi
astservi
e requirements:(r1) it e�e
tively redu
es feedba
k and avoids implosion, whi
h
an be seen on the simula-tions presented in [2℄ and the pra
ti
al results shown later in Se
tion 5;(r2) it dete
ts data pa
ket losses through responses, and losses of poll requests and re-sponses through timeouts, being both are re
overed through retransmissions;(r3) it has a
lever Session Control me
hanism whi
h allows the sender to (s
alably) keeptra
k of the membership similarly to TCP;(r4) it fully prevents overrun losses sin
e the sender has enough information to
arefullyde
ide when to send new data; and

(r5) it a
hieves TCP-friendly multi
ast
ongestion
ontrol as it mimi
s the
ongestion win-dow of TCP by monitoring full ACKs and �rst NACKs.4 Proto
ol Ar
hite
ture and Implementation4.1 Why JavaThe Java platform has proven to be to be a suitable environment for the developmentof PRMP. At �rst, the main fa
tor leading against its
hoi
e was the amount of systemresour
es required by the JVM (Java Virtual Ma
hine), in terms of pro
essing and memory
onsumption, although this tends to be less of an issue as hardware evolves ([11℄). Onthe other hand, the Java language, API (Appli
ation Programming Interfa
e) and virtualma
hine provides a
onsistent environment for the implementation of a proto
ol like PRMP.Its obje
t-oriented approa
h suited the modeling of the proto
ol very well. Further, thebinary-level portability of Java
ode is a great advantage when it
omes to heterogeneousnetwork environments, su
h as the Internet.In Java, the so
kets API is available through a set of
lasses3 that are distributed withthe Language implementation. A
tually, Java eases the task of network programmingby extending basis so
ket
lasses, providing useful abstra
tions. Two su
h examples areTCP input/output streams and obje
t serialization (also known as marshaling). In par-ti
ular, PRMP employs DatagramSo
ket and DatagramPa
ket
lasses, whi
h allow the
re-ation/transmission/re
eption of datagram pa
kets in a well stru
tured and simple manner.PRMP pa
kets
an
arry relatively
omplex obje
ts, like the sliding window
ontained inresponse pa
kets. As datagram pa
kets
an only transport raw bytes, the Java-providedSerializable4 interfa
e is used to marshal and unmarshall obje
ts. An obje
t of a
lass thatimplements this interfa
e
an be
onverted to a byte array that will
ontain all informationabout the internal state of the obje
t. The array
an be used to reassemble (unmarshall)the obje
t, re
overing the original data. The main disadvantage of this s
heme is the addedoverheads: the pro
essing overhead, due to the time spent serializing and de-serializingobje
ts, and the bandwidth overhead, due to the extra spa
e in pa
kets that is required tostore the stru
ture and identi�
ation of the
lass of the obje
t being transmitted.Due to its sophisti
ated Controls, the PRMP sender is somewhat
omplex. The
omplex-ity is redu
ed through a multi-threading ar
hite
ture:
on
urrent threads intera
t throughqueues and tables, making use of monitors to avoid ra
e-
onditions. Mutual ex
lusion isimplemented through the syn
hronizedmodi�er. Java has support for
on
urrent program-ming through a set of
lasses to allow the
reation/monitoring/elimination of threads, aswell as monitors.4.2 Ar
hite
tureThe internal proto
ol stru
ture is
ompletely based on obje
t orientation and
on
urrent pro-gramming. The
omplexity is broken by using one di�erent syn
hronous thread to perform3http://java.sun.
om/j2se/1.3/do
s/api/java/net/pa
kage-frame.html4http://java.sun.
om/j2se/1.3/do
s/api/java/io/Serializable.html

ea
h of the main jobs. We identify four main jobs in the sender, namely: (i) transmission ofdata and poll pa
kets (in
luding the planning of polls); (ii) re
eption and handling of feed-ba
k pa
kets (and the asso
iated loss dete
tion and re
overy); (iii) handling of asyn
hronousevents (setting timers,
an
eling timers and treating timeouts); and (iv) interfa
ing with theupper-layer, in
luding separation of data into blo
ks ready for transmission. Hen
e, thereare four threads.Figure 1 illustrates the overall ar
hite
ture. The Generator Module (GM) interfa
es withthe upper layer. The upper layer writes data to GM, whi
h �generates� and queues up datapa
kets for transmission in the Transmission Queue (TxQ). The Transmitter Module (TxM)reads from TxQ, performs the (re)transmissions of data and poll pa
kets, programmingtimeouts whenever poll requests are sent. To program a retransmission timeout, the TxMenqueues a new event in the Timeout Queue (ToQ). The Event Module (EM) reads fromToQ and is responsible for timeout handling; when so, EM enqueues re-polling requests inTxQ for TxM to handle. The Response Handler Module (RHM) re
eives response pa
ketssent by re
eivers,
an
eling pending timeout events in ToQ when all responses expe
tedfrom a poll request have been re
eived. Also, when a response is re
eived from a givenre
eiver, RHM updates the estimate of RTT for that re
eiver and its
orresponding sendwindow. When updating the send window, RHM may start error re
overy: it dete
ts a loss,
olle
ts ACKs and NACKs, and when it eventually de
ides to retransmit a pa
ket, it doesso enqueing the pa
ket in TxQ. When all re
eivers have positively ACKed and deliveredthe pa
ket, RHM may slide forward the window, enabling GM to take more data from theupper-layer (end-to-end Flow Control).
Upper-layer

TxM

GM

EM

to transmit
enqueue packets

TxQ

RHM

free GM to take more data (open window)

enqueue data packet retransmission

enqueue event

enqueue poll request retransmission

treat event

DATA/DATAPOLL
POLL packets

N e t w o r k

...RM RM3RMRM 21 N

ToQ

RESP packets

cancel event

Figure 1: Proto
ol internal ar
hite
ture.

5 Experimental ResultsThis se
tion presents the results obtained from a set of pra
ti
al experiments we have
on-du
ted with PRMP and two other proto
ols: multiple TCP streams and the Full Feedba
kproto
ol. As the name indi
ates, the multiple TCP streams s
heme emulates multi
astthrough N � 1 TCP streams. Be
ause TCP has built-in Error, Flow, Congestion and Ses-sion Controls ([18℄), the sender may simply send (write to a stream) and forget. A �multi
astpa
ket� is sent by writing the required number of bytes N � 1 times, one for ea
h stream.The se
ond alternative is the Full Feedba
k proto
ol (see [2℄), or simply �FF�. All data pa
k-ets are sent via IP multi
ast. FF is a reliable multi
ast proto
ol with sliding window Errorand Flow Controls, in whi
h re
eivers send ACKs for ea
h pa
ket re
eived (this proto
ol isa similar, but slightly wiser, version of the A proto
ol found in [20℄).5.1 Experiment SettingsThe frequen
y and size of messages generated by the group
ommuni
ation system willdepend on the parti
ular appli
ation. Therefore, one should not make assumptions abouttransmission bursts, average message size and so on. In our tests, we
hose to emulate agroup
ommuni
ation system for a symmetri
,
losed group model of N nodes that behavesyn
hronously (see below). Ea
h �appli
ation node� transmits and re
eives messages to theother N � 1 nodes and is implemented through a multi-threaded Java program
omprisedof 1 sender and N � 1 lo
al re
eivers.The group
omputation advan
es in �rounds�, similarly to the syn
hronous model des
ribedby Lyn
h ([14℄): a round
onsists of sending a message to neighbors (in this
ase, everyone),re
eiving one message from ea
h neighbor (everyone), and then pro
essing messages to makea state transition. These messages are of the type data and have size S bytes. A nodesends a data message to the group, waits until N � 1 data messages are re
eived from itspeers, and then spends a random time (uniform distribution between 0 and Tp ms) while�pro
essing� the messages. Ea
h node performs M of the above rounds, and then gra
efully
loses its session.An external �
oordinator�
ontrols the experiment and
olle
ts output information. Theexperiments starts with ea
h node establishing a �multi
ast session� with the other N � 1members, resulting in a full mesh5. After establishing a session, a node sends a readymessage to the
oordinator; when the
oordinator has
olle
ted all ready messages, itsends a start message to all nodes, whi
h then start the �rst round.In the tests, we �xed the amount of data to be transmitted by ea
h node in 1; 000; 000bytes. We performed two sets of experiments, one using a message size S of 1000 bytes(thus M was 1000 rounds), and another using a message size S of 4000 bytes (thus M was250 rounds). Tp was set to 100 ms (mean 50 ms). This means that ea
h group node willsend to the group either 1000 or 250 messages of 1000 or 4000 bytes ea
h, respe
tively, andthat at end of the session a node will have re
eived 1; 000; 000 � (N � 1) bytes of data.Messages of size S will be transported by PRMP and FF in pa
kets of 1000 bytes; therefore,5with multiple TCP stream proto
ol,
onne
tions are bi-dire
tional and so N(N � 1)=2 streams arerequired.

a message may trigger the sending of 1 or 4 data pa
kets, plus at least one feedba
k pa
ket.(In multi-TCP, the pa
ket size will vary.) Ea
h proto
ol will therefore generate a �ow offeedba
k pa
kets. In PRMP su
h �ow was restri
ted by setting the parameter ResponseRate (RR) to 20 responses/se
. That is, ea
h sender (at ea
h node) will
ontrol feedba
ksu
h that no more than 20 response pa
kets are re
eived per se
ond. However, a node willalso re
eive messages (i.e., data pa
kets) from N � 1 nodes. FF and multi-TCP do not
ontrol the amount of feedba
k.The experiments were run in a
ontrolled environment. Although the
on�guration wasa Lo
al Area Network
omprised of around 70 PCs, in the tests we employed a subsetof 10 ma
hines equally-equipped: PC Pentium III-450MHz with 64 MB of RAM, and FastEthernet boards used however in ordinary Ethernet mode (10 Mbps). The operating systemwas GNU/Linux v.2.2.14, and the development/runtime environment was Sun JDK v.1.3.In order to evaluate PRMP and
ompare it with FF and multi-TCP, we
hose two metri
s:T , de�ned as the �total time�, and C, the �total network
ost� in bytes. Below, these metri
sare explained along with the experiment and result des
ription.5.2 Total TimeThe total time T i at ea
h node i is measured as the time between the delivery (to the upperlayer) of the start message and the last of all N �1 messages of the round M . The overall,total time T is the largest T i re
orded among all nodes, that is, maximum T i. Figure 2presents the total time T (in se
onds) in fun
tion of N , for S = 1000 (left) and S = 4000(right). In both graphs, we show a
urve that
orresponds to the minimum time T , a lowerbound on T
al
ulated as the sum of all pro
essing times Tp. Sin
e average Tp was setto 50 ms, T
ould never be less than 50 se
onds for M = 1000 rounds and 12:5 se
ondsfor M = 250 rounds. In other words, the best result for T would only be a
hievable withinstantaneous
opy of messages among remote nodes.
0

100

200

300

400

500

600

700

2 3 4 5 6 7 8 9 10

T
ot

al
 T

ra
ns

m
is

si
on

 T
im

e
(s

ec
.)

Number of Nodes

PRMP
FF

TCP
Min. Time

0

20

40

60

80

100

120

140

160

180

2 3 4 5 6 7 8 9 10

T
ot

al
 T

ra
ns

m
is

si
on

 T
im

e
(s

ec
.)

Number of Nodes

PRMP
FF

TCP
Min. Time

Figure 2: Total time T in se
onds in fun
tion of N , for N = 2 to 10, with S = 1000 bytes(left) and S = 4000 bytes (right).First
ompare the s
ale on the two graphs of Figure 2. Note that although the results are
onsistent between the two, the performan
e on the right (S = 4000) is mu
h higher thanon the left, whi
h o

urs be
ause group syn
hronization on the right takes pla
e 4 times less

frequently. In other words, if S = 4000, a node
an send 4 pa
kets of 1000 bytes withouthaving to wait for the next round6.Note also that, for any proto
ol, T is expe
ted to grow with N . There are reasons for this:the volume of data being transferred grows exponentially with N , and so does the
ombinedprobability of a re
eiver experien
ing a pa
ket loss in any single multi
ast transmission.Additionally, sin
e in ea
h round a node will re
eive N�1messages, more and more messagesneed to be delivered to the upper layer.As it
an be seen in Figure 2, the multi-TCP s
heme presented the worst performan
eof all: its time T grows exponentially with N . This is mainly due to the fa
t that themulti-TCP approa
h requires ea
h message to be transmitted N�1 times over the network,with two impli
ations. First, the sending of pa
kets takes time, in parti
ular larger datapa
kets. Se
ond, the amount of tra�
 grows heavily and will
ause losses, whi
h on theirturn will require loss dete
tion and re
overy. For TCP, Congestion Control will also a�e
tperforman
e for S = 4000, as the
ongestion window will be redu
ed to 1 segment afterea
h loss; this prevents a network
ollapse. Like TCP, the time required for FF also growsexponentially. However, unlike TCP, FF will try to re
over from losses by re-multi
astingpa
kets, whi
h is equivalent to trying to �put o� a �re with gasoline�. That is why the FF
urve in the graphs are in
omplete: all experiments for N > 5 with S = 1000 or N > 4with S = 4000 led to network
ollapse, being aborted after several minutes of no progressbeing re
orded at all. In
ontrast to multi-TCP and FF, the time T of PRMP grows slowlywith N , from 80 to 120 se
 as N in
reases 5 times. These results demonstrate that PRMPremains e�
ient as N grows, in parti
ular if one
onsiders the in
reasing host load and
ombined probability of loss that a proto
ol must
ope with.5.3 Network Cost (bandwidth)The
ost Ci is the total number of bytes passed by the proto
ol to UDP for transmission(via multi
ast or uni
ast), either data or feedba
k pa
kets, and
onsiders all the overheadin
luded by Java obje
t serialization. Note that Ci intentionally bene�ts multi
ast: thenumber of bytes in a multi
ast transmission is the same of uni
ast. The overall C, presentedin the graphs, is the sum of all Ci's.Figure 3 shows in log s
ale the network
ost N measured in Mbytes, for all three proto
ols.It also shows, for the sake of
omparison, an optimal
ase (�optimum�). The optimum
urveis a lower bound on the bandwidth
onsumption: it
onsiders only the data transmittedby the upper layer, without any proto
ol overhead su
h as headers and feedba
k pa
kets.The Ci for a given node i
annot be less than the amount to be transmitted by ea
hnode: 1; 000; 000 bytes (nearly 1 Mbyte). The overall C for the optimum
urve is thereforeN � 1; 000; 000 bytes, or 9:5 Mbytes for N = 10.The network
ost shown for multi-TCP in Figure 3 is also an optimisti
 value. Sin
e the
ostC for the multi-TCP proto
ol
ould not be measured without using kernel-level tools, C formulti-TCP represents a lower bound, adding only an overhead of 20 bytes (TCP header)for ea
h message transmitted to a node (this number would be greater for S = 4000 bytes,where more than 1 pa
ket would be ne
essary to transport ea
h of the 250 messages).6subje
t to the sliding window of the proto
ol underneath.

1

2

4

8

16

32

64

128

256

512

2 3 4 5 6 7 8 9 10

T
ot

al
 N

et
w

or
k

C
os

t (
M

B
yt

es
)

Number of Nodes

PRMP
FF

TCP
optimum

1

2

4

8

16

32

64

128

2 3 4 5 6 7 8 9 10

T
ot

al
 N

et
w

or
k

C
os

t (
M

B
yt

es
)

Number of Nodes

PRMP
FF

TCP
optimum

Figure 3: Network
ost C in Mbytes in fun
tion of N , for N = 2 to 10, for S = 1000 bytes(left) and S = 4000 bytes (right).First note that, as for time T , the
ost C presented on the graph on the left (S = 1000) arehigher than those on the right (S = 4000). This is be
ause 4 times more feedba
k pa
ketswill be required when S = 1000 (ex
ept for TCP, whi
h may piggyba
k ACKs). Note alsothat the Y axis is in log s
ale.Se
ond, note that the uns
alable nature of FF, without Implosion Control, appears
learlyin the results; in Figure 3 (left), to transfer approximately N Mbytes, FF
ost grows aggres-sively from 5 to 300 Mbytes when group size grows from 2 to 5. The multi-TCP approa
his more e
onomi
al than PRMP for N = 2, and similar for N = 3 or 4. This is be
ausethe multi-TCP approa
h was designed to take advantage of the fa
t that TCP streams arebi-dire
tional: with 2 nodes only, there is a single
onne
tion and no overhead (in fa
t, it isTCP traditional point-to-point
ommuni
ation!) For larger groups, multi-TCP demands onnetwork tra�
 grow a
utely, whi
h is explained by the fa
t that ea
h node must send thesame data N � 1 times. PRMP, instead, presents a network
ost that remains
onsistentlyhigher than the optimum, but proves to be substantially better than the other alternatives.6 Con
luding RemarksThe main
ontributions of this paper are (i) to spe
ify whi
h are the requirements for aTCP-multi
ast servi
e, an assumption of some group
ommuni
ation systems; (ii) to showhow our proto
ol, PRMP (presented in [2℄) satis�es all these requirements; (iii) to providean ar
hite
ture and implementation for PRMP in Java; and (iv) to show pra
ti
al resultstaken from an experimental evaluation with the implementation.Unlike other �s
alable reliable multi
ast proto
ols�, PRMP does not trade o� reliability,performan
e or network
ost for unlimited s
alability. The TCP-multi
ast servi
e is thelayer over whi
h group
ommuni
ation systems
an be built. Multiple TCP
onne
tions areine�
ient and restri
ted to a few re
eivers; broad
ast is wasteful and does not s
ale.Other s
alable reliable multi
ast proto
ols are not suitable for group
ommuni
ation supportbe
ause they emphasize s
alability to the extreme, negatively a�e
ting other aspe
ts, andtypi
ally assume a bulk data dissemination. PRMP is the �rst proto
ol to atta
k all TCP-

like multi
ast requirements together. Unlike other s
alable reliable multi
ast proto
ols, inPRMP the sender maintains the membership information and uses this information for thebene�t of other me
hanisms. A multi
ast proto
ol
annot provide �end-to-end reliability�unless a sender knows and
ontrols the membership set it is transmitting to. Indeed, PRMPbene�ts from keeping re
eiver's state in several ways: (a) it
an avoid implosion, by planningarrival of feedba
k pa
kets; (b) it
an e�
iently dete
t and re
over from pa
ket losses; (
) ituses up-to-date RTT estimates to make fewer mistakes while suspe
ting re
eiver failures; (d)it does not make assumptions regarding the tra�
 generated by the appli
ation; (e) it doesnot require in�nite bu�ers to deliver all data to all re
eivers in the session; (f) it preventsunne
essary losses by overrun; (g) it uses a
ongestion window to perform TCP-friendlyCongestion Control.To illustrate our point, we have des
ribed a PRMP implementation in Java and dis
ussed itsperforman
e. The results indi
ate that PRMP presents mu
h lower network
ost and betterthroughput than the most
ommonly used alternatives. In absolute terms, we expe
t theperforman
e results for PRMP presented here may be in
reased by a fa
tor of 10 if PRMPis re-implemented in C or C++ ([11℄).In this paper, we were able to exe
ute experiments in a single LAN. Performing pra
ti
alexperiments with multi
ast appli
ations using several networks has been very di�
ult formany reasons. First, it requires many other people/institutions to
ollaborate in the test.Se
ond, a multi
ast transmission might easily swamp the network with ex
essive tra�
.Third, multi
ast must be enabled in all networks involved, and spe
ially in the links inter-
onne
ting them (like with IP multi
ast tunnels). Finally, experiments should be
ondu
ted�out of hours� in order to redu
e the likelihood of extraneous tra�
.Nonetheless, as future work, we plan to extend our experiments to in
lude several networks.Even though it has been already shown that PRMP works well for su
h
on�gurations (see[3℄), and that it
an deal properly with heterogeneous RTTs, we would like to present anexperimental evaluation to validate the use of PRMP in supporting group
ommuni
ationsystems over sparsely distributed, large groups.Referen
es[1℄ O. Babaoglu, A. Bartoli and G. Dini, �Group Membership and View Syn
hrony in PartitionableAsyn
hronous Distributed Systems�, IEEE Transa
tions on Computers, v.46, n.6, June 1997,pp. 642-658.[2℄ M. Bar
ellos and P. D. Ezhil
helvan, �An End-to-End Reliable Multi
ast Proto
ol Using Pollingfor S
alability�, In IEEE INFOCOM'98, San Fran
is
o, April 98, pp.1180-1187.[3℄ M. Bar
ellos, �PRMP: Poll-based S
aleable Reliable Multi
ast Proto
ol�, Ph.D. Thesis, Uni-versity of New
astle, New
astle upon Tyne, O
t. 1998, 200p.[4℄ K. Birman, �Building Se
ure and Reliable Network Appli
ations�, Manning: Prenti
e Hall,1996. 500p.[5℄ R. Budhia, �Performan
e Engineering of Group Communi
ation Proto
ols�, Ph.D. Dissertation,University of California at Santa Barbara, Eletri
al and Comp. Eng., Aug. 1997, 169p.

[6℄ S. Deering and D. Cheriton, �Multi
ast Routing in Datagram Internetworks and ExtendedLANs�, ACM Transa
tions on Computer Systems, pp.85-111, May 1990.[7℄ D. Dolev and D. Malki, �The Transis Approa
h to High Availability Cluster Communi
ation�,Communi
ations of the ACM, v.39, n.4, April 96, pp. 64-70.[8℄ P. Ezhil
helvan, R. Ma
edo, and S. Shrivastava, �Newtop: A Fault-Tolerant Group Communi-
ation Proto
ol�. In IEEE 15th Intl. Conf. Distributed Computing Systems, pp.296-306, May1995.[9℄ P. Felber, R. Guerraoui and A. S
hiper, �The Implementation of CORBA Obje
t Servi
e�,Theory and Pra
ti
e of Obje
t Systems, v.4, n.2, 1998, pp. 93-105.[10℄ S. Floyd, V. Ja
obson, S. M
Canne, C. Liu and L. Zhang, �A Reliable Multi
ast Frameworkfor Light-Weight Sessions and Appli
ation Level Framing�, IEEE/ACM Transa
tions on Net-working, v.5, n.6, De
. 1997, pp. 784-803.[11℄ B. Krup
zak, K. Calvert, M. Ammar, "Implementing Proto
ols in Java: The Pri
e of Porta-bility", In IEEE INFOCOM'98, San Fran
is
o, April 98.[12℄ B. Levine, J.J. Gar
ia-Luna-A
eves, �A
omparison of known
lasses of reliable multi
ast pro-to
ols�, In IEEE International Conferen
e on Network Proto
ols, 1996, pp112-121.[13℄ C. Liu, P. Ezhil
helvan, and M. Bar
ellos, �A Multi
ast Transport Proto
ol for Reliable GroupAppli
ations�, Le
ture Notes in Computer S
ien
e, 1736. (First International Workshop onNetworked Group Communi
ation - NGC'99). Springer-Verlag, 1999, pp.170-187.[14℄ N. Lyn
h, �Distributed Algorithms�, Morgan Kaufmann, San Fran
is
o, 1996, 872p.[15℄ G. Morgan, S. K. Shrivastava, P. D. Ezhil
helvan and M. C. Little, �Design and Implementa-tion of a CORBA Fault-Tolerant Group Servi
e�, In 2nd IFIP WG 6.1 International WorkingConferen
e on Distributed Appli
ations and Interoperable Servi
es, Helsinki, June 99.[16℄ S. Paul, �Multi
asting on the Internet and Its Appli
ations�, Kluwer A
ademi
 Publishers,421p., 1998.[17℄ R. V. Renesse, K. P. Birman and S Ma�eis, �HORUS: A �exible Group Communi
ation Sys-tem�, Comm. of the ACM, v.39, n.4, April 96, pp. 76-83.[18℄ W. R. Stevens, �TCP/IP Illustrated, Vol. 1: The Proto
ols�. Chapter 21: TCP Timeout andRetransmission, Addison-Wesley Professional Computing Series, Addison-Wesley, 1994.[19℄ R. Talpade and M. H. Ammar, "Single Conne
tion Emulation (SCE): An Ar
hite
ture forProviding a Reliable Multi
ast Servi
e", In 15th IEEE International Conferen
e on DistributedComputing Systems (ICDCS95), Van
ouver, Canada, June 95, pp. 144-152.[20℄ D. Towsley, J. Kurose, and S. Pingali, �A Comparison of Sender-Initiated and Re
eiver-InitiatedReliable Multi
ast Proto
ols�, IEEE Journal of Sele
ted Areas in Communi
ations, v.15, n.3,pp.398-406, 1997.[21℄ M. Yajni
k, J. Kurose, and D.Tosley, �Pa
ket Loss Correlation in the Mbone Multi
ast Net-work�, UMCASS CMPSCI Te
hni
al Report, 96-32.

