
Simmcast: a Simulation Tool for

Multicast Protocol Evaluation

Marinho Barcellos Hisham Muhammad

André Detsch

PIPCA- Programa de Pós-Graduação em Computação Aplicada

C6 - Centro de Ciências Exatas e Tecnológicas

UNISINOS - Universidade do Vale do Rio dos Sinos

Av. Unisinos, 950 - São Leopoldo, RS - CEP 93.022-000 - BRAZIL

{marinho,hisham,detsch}@exatas.unisinos.br

Abstract. This paper describesSimmcast, a process-based discrete-eventsimulation framework that helps the

design and evaluation of multicast protocols.Simmcast, based on Java, allows simulated protocols to be specified

using a multi-threaded, object-oriented framework; building blocks are combined in order to create new protocol

simulation experiments. To help validatingSimmcast, two reliable multicast protocols used in a well-known an-

alytical study were simulated and the results achieved compared the ones produced bySimmcast. In Simmcast,

users are first presented an easy-to-understand, abstract multicast protocol simulation model, and then can gradu-

ally increase the level of detail in their simulation. Unlike existing tools,Simmcast provides a flexible simulation

model which is dedicated to the design and evaluation ofmulticast protocols.

Resumo. Este artigo descreveSimmcast, um framework para simulação discreta de eventos baseada em proces-

sos que contribui para o projeto e avaliação de protocolos multicast.Simmcast, baseado em Java, permite que

protocolos simulados sejam especificados usando um frameworkmulti-threaded orientado a objetos; “blocos de

construção” são combinados para criar novos experimentos de simulação de protocolos. Com o objetivo de validar

o Simmcast, dois protocolos multicast confiáveis usados em um consagrado estudo analítico foram simulados, e

seus resultados comparados com os resultados obtidos comSimmcast. Simmcast oferece um modelo abstrato

para simulação de protocolos multicast que é fácil de entender e manipular. Usuários podem então gradualmente

aumentar o nível de detalhe nas suas simulações. Diferentemente de ferramentas existentes,Simmcast oferece um

modelo de simulação flexível que é dedicado ao projeto e avaliação deprotocolos multicast.

Keywords: performance evaluation, multicast protocols, simulation, middleware.

418



1 Introduction

Simulation has been a powerful tool to help designing and evaluating communication protocols.

Other ways of gaining knowledge about a protocol are analytical evaluation and experiments

(e.g., [20] and [15], respectively). These three ways are complementary, and may represent

different parts of the same design process. Analytical evaluation is very useful as it can be used

to demonstrate the general impact of protocol input arguments (such as window size), num-

ber of participants, or changes in specific network conditions (such as loss rate) on protocol

performance. However, it works well only for simplistic models, since results are obtained by

changing the input arguments in formulae (the complexity lies in the number of variables con-

sidered). Analytical evaluation is useful to either determine overall trends in abstract protocol

behavior, or to prove formally a protocol’s correctness.

In contrast to the simplified view of analysis, practical experiments are based on a set of test runs

of a protocol communicating over an actual network, and thus produce the most accurate results.

Nonetheless, because of the great influence of topology, systems and configurations involved,

the results collected are bound to a specific setup, and are difficult to reproduce elsewhere. This

is particularly true when scalable multicast protocols are to be evaluated, for it is impractical

to perform a large-scale experiment in a wide-area network. A considerable drawback of this

approach is that it requires the protocol to be implemented before its general workings can be

tested.

Simulation lies at intermediate level, between analytical evaluation and practical experiments. It

allows the protocol designer to adjust the level of detail, retaining only desired features. Further,

simulation has the potential to allow the gradual increment of detail, so that the process results

in a protocol running over an emulated network, ready to be moved to an actual, live network.

This paper describesSimmcast, or Simulation of Multicast1. Simmcast is a simulation frame-

work that allows protocols to be easily defined by a combination of basic building blocks (the

idea of using building blocks to design multicast protocols is being pursued elsewhere; for ex-

ample, see [21]). It is object-oriented and supports multi-threaded multicast protocols. The

main difference between unicast and multicast protocols is the concept ofgroup. In reliable

multicast protocols, agents need the ability to join and leave groups, and to send packets to one

or more of unicast and multicast addresses. Support for multicast communication are builtin

in the simulator, affecting its input arguments, its queuing model, and its output metrics and

traces.

Simmcast is based on Java and JavaSim ([13]), a simulation toolkit whose aim is to emulate the

Simula language ([3]) facilities in Java. JavaSim, and thusSimmcast, follow the same process-

based, object-oriented, discrete event model introduced by Simula.Simmcast indirectly inherits
1Simmcast also recursively stands for “Simmcast is much more concise and structured than...”

419



all the advantages of Simula: its simulation facilities, classes and libraries have a considerably

experienced user community which have found them to be successful for a wide variety of

simulations, including those of communication protocols.

The paper is organized as follows: Section 2 provides an overview ofSimmcast, while Section

3 illustrates the use ofSimmcast and validates its results. Section 4 discusses related work, and

Section 5 concludes the paper.

2 Simmcast Overview

Simmcast is tailored to all kinds of multicast protocols: routing multicast protocols, transport-

level reliable/semi-reliable multicast protocols, and distributed applications whereby agents

communicate over multiple, potentially overlapping multicast groups. The next subsections

provide an overview ofSimmcast, beginning with its Application Program Interface.

2.1 Application Program Interface (API)

As already mentioned,Simmcast is a discrete simulationframework based on the Java pro-

gramming language. The use of frameworks increase software reuseability, which can lead

to advantages like reduced development effort and more robust code through multiple reuse

and refinement of the framework. Simulation seems particularly appropriate for frameworks,

since substantial part of the code can be reused between simulation experiments. The concept

of frameworks has been applied to network simulation (e.g., [6], [14]), to the development of

network protocols (e.g., [8], [19]), and also to build a multicast service (e.g., [18]). The Java

Language, on its turn, has been recently a popular choice for simulation software (e.g., [9]) and

communication protocols (e.g., [11], [1]).

The main idea behind the proposed multicast simulation framework is to provide an API with

the typical communication and timer operations, as well as suitable (concurrent) software archi-

tecture for designing and evaluating multicast protocols. To get a simulation running, the user

needs to add or extend classes or interfaces of the framework according to the specific protocol

and configuration being evaluated, but still uses most of the framework’s functionality without

having to reinvent that functionality (e.g., sending of unicast and multicast messages).

Simplicity of use is one of the main goals ofSimmcast. The use of simpler, synchronous thread

modules in protocol building is encouraged. There are only ten primitive operations provided

to the user:

� send: send a packet to a given destination address, either unicast or multicast;

420



� receive: request the receipt of a packet, blocking until a packet is available;

� tryReceive: try receiving a packet, returning “null” if no packet is available;

� join: receiver joins a given multicast group;

� leave: receiver leaves a given multicast group;

� setTimer: configure timer to expire in a given time in the future;

� cancelTimer: cancel an existing timer;

� onTimer: method invoked when a timer expires;

� sleep: puts the current thread to sleep for a given time;

� wakeUp: wakes up another thread that may be sleeping.

2.2 Building Blocks

In Simmcast a simulation is described by combining a set of building blocks, providing addi-

tional code when required. Building blocks themselves are made up mixing two basic com-

ponents:processes andqueues. Processes are active objects that correspond to one thread of

execution. Processes add and remove objects to and from queues (in fact, ordered lists). Queues

are used mostly to model packets in transit. Below, the building blocks are presented; for each

building block, there is a corresponding class.

Node. Nodes are the fundamental interacting entities, and uniquely identified by an integer.

Depending on the desired level of abstraction, nodes can represent a protocol agent in a

host, a router, or one of many interacting entities in a host/router. A node will contain one

or more threads of execution. Supposex andy are nodes. Everyx has one send queue

for each outgoing connection (queue denoted asSQx � y, when sending fromx to y), and

a single receive queue (denoted asRQx), to whom all packets arriving (atx) are added

to. BothSQs andRQ have finite length;SQ is served according to link bandwidth, while

RQ is served according to the node thread that receives packets. Send and receive times

(Tsend andTrecv, respectively) are the times taken to send and receive packets, and can be

configured by the user. Eachx has also a timer queue,T Qx, to hold asynchronous events.

Link. Nodes are connected by links. Link properties are bandwidth, packet loss probability

(denoted asε), and propagation delay (Tprop). Tprop can be fixed or drawn from a user-

chosen random distribution stream. Each link has an associated link queue (LQx � y) to hold

packets being propagated fromx to y. Links in Simmcast can represent a physical link,

421



a channel which combines network properties of several physical links (like in [2]), or a

local message queue.

Group. The concept of group is paramount to multicast protocols. The membership of a group

can be defined by the user via the simulation description file that describes the experiment.

Alternatively, nodes, through the protocol software associated, are able to dynamically

join or leave groups, according to the protocol logic.

Network. A network is an arbitrary combination of nodes and links. Network connectivity is

described through a square matrix of sizeN � N, denoted asL (of links). An element

Lx � y corresponds to the unidirectional link from nodex to y. No specific routing scheme

is enforced by the simulator, so that different kinds of routing schemes can be added by

creating/using routing nodes (by specializing theNode class with some routing logic).

Consequently, when a nodex sends to another nodey, x must be directly connected toy

(
�

Lx � y). Likewise, when a node sends to a groupg, x must be directly connected to all

elements ofg (for everyy � g,
�

Lx � y).
Packet. Packets are the unit of communication between any two or more nodes. The packet

class contains the minimal attributes required by a packet in Simmcast, and for new pro-

tocols, inheritance is used to define new packet types.

Figure 1 depicts the internal structure of a node and the packet flow through its queues; there

are three nodes,x, y andz, but onlyy is fully represented. Wheny sends a packet toz (y �� z), the

packet is enqueued inSQy � z, space allowing (otherwise the packet is discarded). The thread of

y that invokedsend remains blocked forTsend time, before control returns. The packet moves

from SQy � z to LQy � z according to packet size and bandwidth. Note that by defaultLQy � z has

infinite size. The packet is then kept inLQy � z for Tprop time, and is subject to loss according to

the loss probability of the link. When a packet arrives atz, it is moved fromLQy � z to RQz, again

space allowing. The packet remains inRQz for an arbitrary time, and leavesRQz according to

receive andtryReceive operations issued by protocol logic of nodez.

To complete the node specification, there are two building blocks that usually correspond to

operating system resources,threads andtimers.

Thread. Threads simplify a protocol because they allow the developer to model the architecture

as a set of simpler interacting synchronous entities. More complex protocols or agents

(like servers) can be simulated with threads that are dynamically spawn on demand to

handle incoming messages (one thread per message). InSimmcast each process maps

into a thread.

422



z

protocol
logic

LQy,z

LQz,y

SQy,xLQy,x

LQx,y

SQy,z

RQy

yx
TQy

Figure 1: Illustration of node structure;x, y, andz are nodes, but onlyy is fully represented.

Timer. Asynchronous events can be implemented using timers. There are many cases of asyn-

chronous events in protocol software, being timeouts the most common ones. Timeouts

are used, for example, to detect packet losses. Also, permanent, consecutive timeouts

allows a node to suspect that a network partition has occurred. Timers can also be used

to implement periodic behavior, like TCP2. Timed events can be controlled by simply

overriding theonTimer method of theNode class.

The combination of the previous elements is used to build the configuration for an experiment.

Finally, there are other building blocks that are meant to help the design of protocols; the two

most important ones areQueue and SlidingWindow. Queues are an important structure in

protocol software, for protocol layers or cooperating modules can be expressed in terms of pro-

ducer/consumer models that communicate over a common queue. Sliding windows are a fun-

damental mechanism for reliable protocols, being used to control packet transmission and con-

firmation of receipt; for example, TCP error, flow and congestion controls are all built around

the concept of a sliding window. Sender-initiated reliable multicast protocols can benefit from

a sliding window that can be extended to work with multicast groups.

2.3 Output (metrics)

Simulation allows protocols to be evaluated according to some given metrics. The most popular

examples are throughput and network cost. Throughput is usually defined as the amount of user

data transmitted over time required to (reliably) transmit it3.

Network cost can be simply defined as the amount of bandwidth required in order to (reliably)

complete the transmission of all the data. In unicast communication, such definition can be
2TCP implementations deal with events periodically at every 200 and 500ms intervals.
3in case of reliable transmission, also calledgoodput.

423



straightforwardly transformed into a formula. However, it is slightly more complex to evaluate

network cost with multicast communication, due to the replication of packets that occurs as

these traverse a multicast distribution tree. Note that a packet might be transmitted, in general,

either via one or more unicast transmissions, or via a single multicast transmission, depending

whether the packet is intended to the entire group or to a subset (e.g., in case of a retransmission

a reliable multicast protocol must perform). The former approach sends the same packet several

times, but only to those interested in receiving a copy of that particular packet, while the latter

approach sends a single copy but to all receivers, regardless of interest in the packet. Irrespective

of the unit chosen (packets, bytes or bits), there are at least three different ways of assessing

network cost.

The first way to measure cost is to count the amount of packetstransmitted by senders (data and

control) and receivers (control). In this model, a unicast transmission costs as much as a 1-to-N

multicast one, which is clearly untrue for anyN � 1, considering the extra bandwidth (inN � 1

links) and processing times required (atN � 1 receivers). The second way distinguishes the cost

between unicast and multicast by counting the number of packetsreceived. In this model, a

packet that is sent via multicast will costN (receptions), while every unicast packet will cost

only 1 (reception). Therefore, unnecessary use of multicast is penalized, as desired. However,

this model does not consider the processing cost required to send the multiple copies of the

same packet (when sending to a subset of the group): sendingN copies of a packet represents

the same cost (N receptions) of sending a single copy by multicast (alsoN receptions). This is

clearly undesirable.

The above approaches are limited because they overlook network topology. The third way to

assess cost is to sum all packets, bits or bytes transported through all communication links (data

and control) that make up the topology. A protocol that sends all packets via multicast will

be accounted for that, as well as a protocol that only sends via multiple unicasts.Simmcast

provides ways to the user to collect such data and consolidate it.

Finally, there are other metrics that may be of interest, but it depends on the particular protocol

or application considered. Examples of metrics are the number of congestion losses experi-

mented in a bottleneck router when a congestion control mechanism has been active, or the

mean time until a receiver can recover from a packet loss while receiving real-time traffic (e.g.,

audio or video).

Besides output metrics, trace files are an essential feature of protocol simulators. They allow

a protocol behavior to be investigated similarly to what would occur with a sniffer in a live

network. AsSimmcast is based on discrete-event simulation, it allows events to be recorded on

trace files. InSimmcast, all events are considered to be inclusion and/or removal of an element

to/from its queues (SQ, LQ, RQ, T Q). For example, when a packet is sent, the following

events will take place: adding a packet toSQ, moving the packet fromSQ to LQ, moving the

424



packet fromLQ to RQ, and removing the packet fromRQ. Timer events are also represented

by enqueing/dequeuing objects to/fromT Q. Besides its native trace format,Simmcast can

generate trace files in the VINTnam ([7]) format, so that multicast protocols simulations can

be later visualized using this network animator.

2.4 Running a Simulation

To run a simulation, the user must specify three things:

1. the simulated protocol: a new protocol can be built by combining existing building blocks

and specializingNode and related classes. There may be one kind of agent (e.g., peer

group application), two kinds (e.g., sender, receiver, or client and server, or master and

slave), three kinds (e.g., sender, proxy, receiver), and so on.

2. the network topology: instantiate nodes and define their connectivity. Different levels of

network representation are possible. The default forSimmcast is the more abstract level:

the network is a set of direct point-to-point connections between nodes. The topology is

a single-level multicast tree. A higher level of detail is obtained by making part of the

nodes act like routers, as previously mentioned.

3. the protocol topology: how to specify (input) the protocol topology (agent allocation) to

network previously defined.

The latter two steps are done by preparing a simulation description file. The input arguments

laid out in Subsection 2.2 can be configured through such file. For example, users can set

the times ofTsend and Trecv of each node to be a given value or draw from a given random

distribution, the sizes ofSQ and RQ (they can be limited to a number of packets), and the

properties bandwidth, delay and error rate of each link in matrixL.

3 Example Protocol Models

3.1 Modeling of a Simple Multicast Protocol

This section illustrates a simple, yet nearly functional, reliable multicast protocol modelled

using Simmcast. Its purpose is to illustrate the use of threads and object-orientation when

describing a multicast protocol4. The chosen protocol isFF - Full Feedback, described in [2].

Figure 2 presents a diagram with its main classes.
4Due to space restrictions the source code cannot be included in the paper; the interested reader should refer to

http://www.inf.unisinos.br/~marinho/Research/simmcast.htm.

425



Thesource node is an instance of theFFSource class, which in turn extendsNode. It contains

two threads,FFSourceSender andFFSourceReceiver. For each transmission or retransmis-

sion, FFSourceSender sends a packet to the multicast group address and sets a timeout us-

ing thesetTimer facility. Retransmissions are scheduled in the overriddenonTimer method,

called whenever a previously set timeout expires. Timeouts may be canceled whenFFSource-

Receiver receives at least oneACK from everysink node. On the other hand, the sink nodes

(instances of theFFSink class) are single-threaded. They block waiting for packets using the

receive method, and, as each packet arrives, a correspondingACK is transmitted.

FFSinkThread FFSinkThread FFSinkThread

FFSourceReceiver

N
od

e

N
od

e

N
od

e

F
F

N
et

w
or

k

...

N
et

w
or

k FFSourceSender

N
od

e

F
F

S
in

k

NodeThread F
F

S
in

k

NodeThread F
F

S
in

k

NodeThread

F
F

S
ou

rc
e

NodeThread

NodeThread

Figure 2: Diagram with modules for theFF protocol.

3.2 Modeling of two Abstract Reliable Multicast Protocols

This section compares the results of an experiment usingSimmcast with results taken from

a well-known analytical study of the scalability of reliable multicast protocols ([20]). The

aim of that study was to determine the maximum packet processing rates attainable at sender

and receivers forsender-initiated andreceiver-initiated models. So, the study employed only

abstract network and protocol models, with many implications: the sender always re-multicast

to the entire group after loss detection, even if a single loss occurred; there was no propagation

time (infinite bandwidth); feedback packets were never lost; buffer was infinite for all parties

involved. Implementations of the protocolsA andN1, when built usingSimmcast, are shown

below, for the sender side only5. The input arguments and symbols were taken from [20]:

E 	 Xp 
 , E 	 Xa 
 , E 	 Xn 
 , E 	 Xt 
 representing, respectively, the mean times for packet transmission,

ACK handling,NACK handling, and retransmission timeout. The values employed in [20] are,

respectively 1ms, 0.5ms, 0.5ms, and 0.024ms, for the sender side, and no delay at the receiver

side. Consequently, the simulation was configured withTsend
� 1ms andTrecv

� 0 � 5ms; in case

of A sender, timeout overhead was explicitly modelled usingsleep(E 	 Xt 
 ).
5the study of receiver capacity is omitted since the sender constitutes the bottleneck.

426



ProtocolA, whose pseudo-code is shown in Figure 3, uses selective retransmission. One packet

is transmitted at a time, and retransmitted until at least oneACK has been received from every

receiver. Data packets are uniquely identified by a sequence number. Since in [20] there is

neither propagation time nor any delay at receivers, the round-trip-time always equals the time

to transmit a packet. Hence, the retransmission timeout forA sender is the best possible: the

packet transmission time, orTsend. In other words, the sender can check if allACKs have arrived

right after finishing with transmission.

SENDER:
while there are packets to be transmitted

send packet of sequence seq
while there are acks ready to be received

receive ack
add ack to ack list if not already there
if ackList is complete

increment seq
clear ackList

else
wait on E[Xt], the timeout handling time

RECEIVER:
while true

receive data packet of sequence seq
send positive acknowledgment for sequence seq

Figure 3:A - Ack-based Protocol

For protocolN1 (and many other receiver-initiated protocols), loss detection is carried out at re-

ceivers, through a gap in the packet sequencing. For it is not possible to state how many packets

in sequence will be lost by any receiver, the sender must send all its packets, instead of going

one at a time as done with protocolA above. To have multiple outstanding packets and recovery

going on would make the model unnecessarily complex; to simplify it, the implementation of

losses is simulatedat the receiver side. In case of drawing a loss, aNACK packet may have to be

transmitted (it is not when another copy of such packet had been already successfully received).

The sender transmits a packet, and similarly to protocolA, can immediately afterwards check

for any existingNACKs that may be available. Then any existingNACKs are received; oneNACK

is sufficient to make the sender retransmit the packet. The pseudo-code for theN1 protocol is

shown in Figure 4.

The results for the models simulated withSimmcast are shown in Figure 5, along with the

ones provided in [20]. The two lines correspond to the analytical results, whereas the bullets

represent the simulation ones. The analytical results were obtained by applying formulae (4)

and (10) for the values used in [20] (for illustration purposes taking the particular case of loss

probability of 0� 05). The difference between analytical and simulation results was generally

under 1%. As an aside, note that neitherA nor N1 protocols scale well: as shown in Figure 5,

427



SENDER:
while there are packets to be transmitted

send packet of sequence seq
while there are nacks ready to be received

receive nack
if no nacks have been received

increment seq, advancing to next packet
RECEIVER:

while true
receive data packet of sequence seq
if draw packet loss

if packet seq had not been already successfully received
send negative acknowledgement regarding packet seq

Figure 4:N1 - Multicast Nack-based Protocol

both protocols “break” before a group size of 100 receivers is reached, which is equivalent to

10% of the domain shown.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800 900 1000

P
ro

ce
ss

in
g 

ra
te

s 
(p

kt
s/

m
se

c)

�

Receivers

N1 Analysis
N1 Simulation

A Analysis
A Simulation

Figure 5: Comparison between analytical results andSimmcast simulations forA andN1.

Note also that using different techniques, like analytical evaluation and simulation, are positive,

complimentary parts of the scientific process of studying protocols. Expressing the analytic

models and its simplifying assumptions with simulation might appear to point out to the reader

limitations of [20]; however, this is not so, since the goal of that study was to determine max-

imum processing rates (and thus under best conditions) of sender and receiver-initiated proto-

cols, not their typical performance.

428



4 Related Work

There has been considerable work on network simulation, resulting in several interesting tools.

These may be divided intosimulators andtestbeds. Testbeds allow certain network conditions

to be emulated by filtering out, delaying or duplicating packets. Examples of testbeds areDelay-

line ([10]), Dummynet ([17]), ComFIRM ([12]), andx-sim ([4]). Delayline is a library that must

be linked with a distributed application, so that the latter can be tested in stringent network con-

ditions, where packets are delayed or lost.Dummynet follows the same principle, introducing

delays and losses, however acting as an additional protocol layer. It has a compatibility limi-

tation: the software is bound to a specific system and kernel release of FreeBSD; if to be used

in a different Unix system,Dummynet would have to be adapted to that specific kernel. Like

Dummynet, ComFIRM is a kernel-based tool, which allowscertain packets to be delayed, du-

plicated or discarded, according to a set of user-defined rules.ComFIRM is restricted to Linux:

it lies within the Linux kernel, and input is given through the/proc file-system. Finally,x-sim

is a layered network testbed highly integrated on thex-kernel ([16]); at the bottom layer,x-sim

employs an emulation layer calledSIM. A protocol graph is instated on top ofSIM; packets that

are sent by the upper layers are acted upon bySIM and then transmitted out or returned to the

upper layers. All communication among peers typically occur in a single node. The drawback

with x-sim is that it is highly integrated into thex-kernel, requiring: (a) a port of thex-kernel

to be available to a given architecture; (b) thex-kernel software to be installed in the desired

machines; and (c) users to learn aboutx-kernel before they can learnx-sim.

The above tools do not allowall conditions to be tested, because they are limited byexisting

conditions. For example, if a multicast protocol is to be evaluated withDummynet, sender and

all receivers will run in the same machine, which might overload the system and alter the timely

behavior of the protocol; hence, timeouts would occur more frequently. Another limitation is

that results cannot be reproduced. By changing existing conditions, the network testbeds modify

real-life systems so that protocols can be evaluated/tested in particular scenarios. Because there

are many sources of non-determinism in real systems, results of a given experiment will not

necessarily result the same every time.

Simulators, in contrast, must give reproduceable results. Besides, simulators allow any known

specific condition to be tested; in general, the developer has much more control over the ex-

periment with simulation than with testbeds. However, the model to be simulated represents

an abstract view of the actual protocol and underlying network (with its topology, connectiv-

ity, packet loss correlation, traffic patterns, etc.). Building a simulation model involves making

simplifying assumptions to help focus on the relevant aspects of the study. Without such simpli-

fications, the model would be as complex as the system it is meant to be simulating. Nonethe-

less, the accuracy of the simulation results depends upon how valid the initial assumptions were

([13]).

429



One of the most popular examples of network simulator is the VINTns simulator ([5]). Ns is

result of a DARPA-funded research project whose aim is to build a network simulator that will

allow the study of scale and protocol interaction in the context of current and future network

protocols.Ns has been used to support research on the study of TCP performance, network dy-

namics under multiple protocol interaction, multimedia protocols, queuing policies at routers,

reliable multicast protocols, and congestion control.Ns has the advantage of being a resourceful

simulator: it supports a large amount of technologies and actual protocols. UnlikeSimmcast, ns

employs two languages (a dual model), namely C++ and OTcl (one of the existing versions of

object-oriented Tcl). Protocols are written in C++, while simulator software is predominantly

C++, and simulation scripts are fully OTcl. This permits the script to access parts of the im-

plementation and vice-versa. Being resourceful and dual has the disadvantages of making the

code unnecessarily complex: the simulator is over 200,000 lines of code, of which approxi-

mately half is written in C++ and half in OTcl; besides, there are places where C++ and OTcl

are mingled together. To develop a new protocol, the designer needs to understand the internal

workings ofns, modify its Makefiles, and recompilens with the new protocol. For example, to

create new packet types,ns header files must be changed, clearly not a clean approach. In addi-

tion to that, unlikeSimmcast, ns does not support theprocess approach: hencens doesnot have

support for multi-threaded protocols, nor it can simulate processing delays. A final limitation

of ns is that communicating agents must be bound through the OTcl simulation script, which

makes hard for a singlens agent to transmit to multiple addresses. All of the above factors

have a negative impact on the development of more complex protocols, in particular of reliable

multicast protocols.

Simmcast is tailored for multicast protocols, as shown in Section 2, even though it can be used

to the design of unicast protocols as well. It supports multi-threading, allowing the specifica-

tion of protocols that are built of simpler, synchronous components, which can greatly simplify

the protocol design.Simmcast employs a single language, Java: experiments are specified in

a description file that invokes Java methods part ofSimmcast or of the protocol, throughdy-

namic class loading, a powerful feature supported by Java.Simmcast is also a framework: new

simulated protocols can be rapidly developed by combining building blocks and specializing

code already present. Finally, Java was chosen because although it lacks performance in com-

parison with languages like C or C++, it compensates in portability, ease of use, and standard

library support for threads, networking, and graphics. In terms of simulation, this promotes

visualization and parallel/distributed simulation.

430



5 Concluding Remarks

The contribution of this paper is to introduceSimmcast, a discrete-event, process-based sim-

ulation framework for designing and evaluatingmulticast protocols. As such,Simmcast has

extensive builtin support to multicast communication. Its framework employs a structure of

building blocks that allows the creation of experiments with different abstraction levels.Simm-

cast is easy to use, for the following reasons. First, the object-oriented programming interface

is based on a concise set of primitives, and shields the users from the internal specifics of the

simulator. Second, users specify a new protocol by combining available building blocks and in-

serting custom protocol logic, without the need to recompile anySimmcast packages. Finally,

new experiments are created by modifying entry parameters in a simulation description file,

again without having to recompile any code.

To illustrate the use ofSimmcast, a simulated version of a simple reliable multicast protocol

was presented. The comparison between results obtained from analytical evaluation of multicast

protocols and the corresponding simulation results showed that abstract models can be precisely

expressed withSimmcast. Then, such abstract models can be improved to represent increasing

levels of detail, providing precious insight about the actual performance of multicast protocols.

Future work includes adding a “native” concept of communication ports to the model, by hav-

ing more than oneRQ in a node. Further improvements are the development of a range of

well-known multicast protocols, so that the framework is refined and new building blocks are

gradually added. These include all sorts of multicast protocols:multicast routing algorithms

(the logic for routing nodes),data dissemination reliable multicast protocols, multimedia real-

time broadcasting (and QoS), as well asdistributed group-based applications. Long-term goals

include the exploration of parallel and distributed simulation, and the development of a graph-

ical interface, to aid specifying protocols and experiments, as well as visualizing simulation

results.

Acknowledgments

The authors would like to thank the useful comments provided by reviewers, as well as FAPERGS

for partly funding the work reported in this paper. The authors also thank Dr. Mark C. Little,

for developingJavaSim while at at Newcastle University.

431



References

[1] B. Bal, “Design and Implementation of a Reliable Group Communication Toolkit for

Java”, University of Cornell, available athttp://www.cs.cornell.edu/Info/Projects/

JavaGroupsNew/papers/Coots.ps.gz, Jan. 2001.

[2] M. Barcellos & P. Ezhilchelvan, “A Reliable Multicast Protocol using Polling for Scaleability”. In

IEEE INFOCOM’98, San Francisco, 29 March-2nd. April 1998.

[3] G. Birtwistle, O-J. Dahl, B. Myhrhaug, and K. Nygaard, “Simula begin”, Studentlitteratur, Lund,

Sweden, 1973.

[4] L. S. Brakmo and L. L. Peterson, “Experiences with network simulation”, In ACM Sigmetrics’96,

pp. 80-90, May 1996.

[5] L. Breslau et alli, “Advances in Network Simulation”, IEEE Computer, v.33, n.5, pp. 59-67, May

2000.

[6] J. Cowie, D. M. Nicol and A. T. Ogielski, “Modeling the Global Internet”, Computing in Science

& Engineering, v. 1, n. 1, pp. 42-50, Jan 1999.

[7] K. Fall and K. Varadhan, “The ns Manual”, The VINT Project, UC Berkeley, LBL, USC/ISI,

Xerox PARC,http://www.isi.edu/nsnam/ns/ns-documentation.html

[8] H. Hüni, R. Johnson, and R. Engel. “A framework for network protocol software”. In Conference

on Object-Oriented Programming: Systems, Languages and Applications (OOPSLA’95), pp. 358-

369, Austin, TX, September 1995.

[9] F. Howell and R. McNab, "simjava: a discrete event simulation package for Java with applications

in computer systems modelling", In proc. First International Conference on Web-based Modelling

and Simulation, San Diego CA, Society for Computer Simulation, Jan 1998.

[10] D. B. Ingham and G. D. Parrington, "Delayline: A Wide-Area Network Emulation Tool,"

Computing Systems, v.7, n. 3, pp.313-332, 1994.

[11] B. Krupczak, K. Calvert, M. Ammar, "Implementing Protocols in Java: The Price of Portability",

In IEEE INFOCOM’98, San Francisco, 29 March-2nd. April 1998.

[12] F. O. Leite, “ComFIRM - Injeção de Falhas de Comunicação Através da Alteração de Recursos

do Sistema Operacional”, M.Sc. Dissertation, CPGCC-UFRGS, Dec. 2000

[13] M. C. Little, “JavaSim Users Guide”, Public Release 0.3, Version 1.0,

http://javasim.ncl.ac.uk

[14] D. Madhava Rao, R. Radhakrishnan, and P. A. Wilsey, “FWNS: A Framework for Web-based Net-

work Simulation”, In Proc. of International Conference On Web-Based Modelling & Simulation,

WEBSIM’99, Volume 31, Number 3, 9-14, January 1999.

432



[15] S. Paul, K. Sabnani, J. Lin, and S. Bhattacharyya, “Reliable Multicast Transport Protocol

(RMTP)”, IEEE Journal of Selected Areas in Communications, v.15, n.3, pp.407-421, 1997.

[16] L. Peterson, B. Davie, and A. Bavier, “x-kernel Tutorial”, The University of Arizona, Computer

Science Department, Jan. 1996,http://www.cs.arizona.edu/classes/cs525/tutorial/

tutorial.html

[17] L. Rizzo, “Dummynet: a simple approach to the evaluation of network protocols”, ACM

Computer Communication Review, v. 27, n.1, Jan. 1997.

[18] M. A. Rodrigues, S. Colcher, and L. F. Soares, “Um Framework para a Provisão de Serviço de Mul-

ticast em Ambientes Genéricos de Processamento e Comunicação”, Em SBRC’99 - XVII Simpósio

Brasileiro de Redes de Computadores, p.206-221, SBC 1999.

[19] D. C. Schmidt, “The ADAPTIVE Communication Environment: An Object-Oriented Network

Programming Toolkit for Developing Communication Software”, In 12th Annual Sun Users

Group Conference, pp.214-225, San Francisco, CA, 1994. (see alsohttp://www.cs.wustl.edu/

~schmidt/ACE.html)

[20] D. Towsley, J. Kurose, and S. Pingali, “A Comparison of Sender-Initiated and Receiver-Initiated

Reliable Multicast Protocols”, IEEE Journal of Selected Areas in Communications, v.15, n.3,

pp.398-406, 1997.

[21] B. Whetten et alli, “Reliable Multicast Transport Building Blocks for One-to-Many Bulk-Data

Transfer”, RFC3048, IETF, Draft 3, January 2001,ftp://ftp.rfc-editor.org/in-notes/

rfc3048.txt

433


	cabecalho: 
	seta: 


