
Journal of Network and Computer Applications 35 (2012) 328–339
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
1084-80

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.com/locate/jnca
Beyond network simulators: Fostering novel distributed applications and
protocols through extendible design
Marinho P. Barcellos �, Rodolfo S. Antunes, Hisham H. Muhammad, Ruthiano S. Munaretti

Institute of Informatics, Federal University of Rio Grande do Sul (INF/UFRGS), Av. Bento Gonc-alves, 9500 – Bloco 4, Porto Alegre/RS, Brazil
a r t i c l e i n f o

Article history:

Received 4 April 2011

Received in revised form

1 July 2011

Accepted 30 July 2011
Available online 6 August 2011

Keywords:

Distributed systems

Simulation

Software engineering
45/$ - see front matter & 2011 Elsevier Ltd. A

016/j.jnca.2011.07.015

esponding author.

ail address: marinho@acm.org (M.P. Barcellos
a b s t r a c t

Simulation has been of paramount importance to the development of novel Internet protocols. Such an

approach typically focuses on one of three domains: wireless and other link-layer technologies, routing

protocols, and transport-layer mechanisms and protocols. Existing techniques can tackle well simula-

tion at layers 2, 3 and 4 of the TCP/IP architecture, but are not flexible enough to appropriately deal

with application-layer protocols. These require simulators that support the modeling of networks and

components with different levels of abstraction. Simmcast is an object-oriented framework that focuses

on the necessary flexibility for application-layer protocol research. A simulation can be developed by

the simple extension of building blocks that closely resemble components of a real network such as

hosts, links and routers. The internal complexity of these components, however, is hidden from the

user, so he/she can focus on the implementation of the desired protocol characteristics. This paper

describes the flexible simulation architecture proposed and instantiated through Simmcast, and draws

lessons from our experience in designing, implementing and deploying it. We also present framework

instances used to evaluate application-layer protocols, exemplifying how different kinds of simulations

can be developed with Simmcast.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Protocols are the fundamental entity of computer networks
and distributed systems, and their characteristics vary widely
according to the purpose and the network layer they belong to. In
developing and evaluating protocols, one should consider the
peculiar characteristics of the corresponding class being studied.
These can be mapped into a range of protocol input parameters or
specific network conditions to be assumed or evaluated.

Three well-known techniques have been extensively used to
evaluate the performance of network/transport protocols and dis-
tributed systems: analytical evaluation, experimentation (measuring
a real system) and simulation. Out of these techniques, simulation
offers an advantage in that it can be used not only to evaluate
protocol performance according to given metrics, but also to better
understand interactions and identify potential anomalies. Further,
simulation allows one to easily experiment with a protocol under
dynamic scenarios, such as scheduling temporary link and node
crashes.

Simulation involves a modeling process that evolves into later
execution on a simulation tool. There are many sensitive aspects
ll rights reserved.

).
that will rule the choice of such a tool, and these are mainly
affected by the characteristics of the model. The most commonly
chosen approaches are: using a ready-made simulator which will
hopefully fit the project’s needs, or develop a new one, specifically
designed for the intended experiments.

Both approaches present clear disadvantages: a large, mono-
lithic simulator would limit the flexibility of the researcher,
forcing him/her to model the problem in question into the
environment provided by the simulator itself. While some exces-
sively detailed parts of this environment will appear as overkill to
the problem, others will not provide all of the required function-
ality. On the other hand, the complete development of a dedicated
simulation tool from scratch is not practical, since the amount of
resources dispensed in such a task would detract the researcher’s
focus from the project. Unfortunately, this has been all too
common, with a proliferation of simulators.

Therefore, a different approach is needed, combining the best
of both worlds. Such an approach would imply having a simula-
tion toolset that relieves the researcher from dealing with generic
tools and from constructing an entire simulator, but at the same
time allows him/her to mold the aspects of the simulation
environment as the experiments evolve.

Given the above requirements, Muhammad and Barcellos
(2002) proposed a simulation architecture, conceived as an
object-oriented framework called Simmcast. It allows a protocol

www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2011.07.015
mailto:marinho@acm.org
dx.doi.org/10.1016/j.jnca.2011.07.015

M.P. Barcellos et al. / Journal of Network and Computer Applications 35 (2012) 328–339 329
to be investigated by expressing it as a custom simulation model
built on top of provided, abstract, building blocks, that are linked
together through a process-based discrete-event simulation
engine. Aspects of the simulation environment can be molded
and adapted as the experiment evolves, relieving the researcher
from dealing with generic tools as well as from constructing an
entire simulator. Simmcast follows the same process-based,
object-oriented, discrete-event model introduced by Simula lan-
guage (Nygaard and Dahl, 1978) in the late 1960s. Hence, it
employs a familiar and proven simulation model, used in a wide
range of applications. The flexibility provided by the framework
allows a wide range of protocols, particularly application-level
ones, to be properly modeled and evaluated.

After its conception, Simmcast was employed in the develop-
ment of simulations for studies of application-layer protocols. These
simulations allowed us to rapidly acquire results such as, but not
restricted to: better understanding of protocol interactions; ideal
parameter values to be later used in live experiments; and experi-
ence in protocol development and operation in a strictly controlled
environment. The use of Simmcast allowed faster acquisition of
these results, by greatly reducing the development time necessary
to get simulations running. Later comparisons of our simulation
results with real protocol implementations in controlled environ-
ments showed a very close similarity, demonstrating the potential
accuracy achieved by simulators created with Simmcast.

In this paper we aim to present an overview of the develop-
ment efforts involving Simmcast, including framework design and
implementation issues, performance evaluations, and examples of
studies which applied the framework. Section 2 categorizes the
work on protocol simulation and compares our proposal to
similar efforts. The architecture of Simmcast is presented in
Section 3, while implementation aspects are addressed in
Section 4. This implementation was used in a performance
evaluation, and Section 5 provides a performance analysis with
some lower bounds on simulation time and space. Studies that
employ Simmcast for simulation development are presented in
Section 6. The paper closes with concluding remarks in Section 7.
2. Related work

The field of discrete-time simulation is broad, and many tools
and techniques have been proposed in the past 10 years. So, if
there are too many languages and simulators already, one might
ask why devising yet another one. Simmcast is neither a new
language nor a simulator application. Instead, it is a framework

that can be extended into a simulator, unlike similar approaches.
Initial work on network simulation has focused on layers 2,

3 and 4 of the Internet architecture. Link-layer simulators like the
one proposed by Lacage and Henderson (2006) focus in the
investigation of wireless protocols. NS-2 Developers (2009) were
widely used for investigation of routing algorithms at the network
layer, or congestion control mechanisms and reliable multicast
protocols at the transport-layer. Later simulators also focused on
application-level protocols, such as PeerSim (Jelasity et al., 2009)
or PlanetSim (Pujol-Ahulló et al., 2009). Below, we comment on
the most important initiatives.

VINT NS-2 (Bajaj et al., 1999) is probably the most popular
packet-level network simulator employed by the research com-
munity. The software was developed combining Cþþ and OTcl,
since it was easier to create more abstract objects in OTcl for
configuration purposes while the core of the simulation would be
executed using Cþþ, providing good performance where neces-
sary. NS-2 wide adoption by the research community reflects on a
large number of protocols from layers 2-4 contributed and
incorporated into the simulator.
Early in its evolution, however, NS-2 became too complex.
Bajaj et al. (1999) mention the absence of isolation among
modules, causing a modification in the source code to generate
side-effects and compromise apparently unrelated simulations.
The learning curve of NS-2 is steep, possibly leading to misunder-
standings of the simulator and incorrect interpretation of results.
These limitations led to the creation of NS-3 Developers (2010),
which represents a complete rewrite of the simulator. The NS-3
project has a broad set of goals (Henderson et al., 2006), including
scalability, extensibility, modularity, emulation, and clarity of
design. Like NS-2, NS-3 focuses on the study and analysis of
layers 2–4 of the present network model.

Cowie et al. (1999) and Nicol et al. (2003) describe the Scalable
Simulation Framework (SSF), a simulation Application Program-
ming Interface (API) with focus on large scale networks, with
bindings for both Cþþ and Java. Its major contribution is to
explore the locality of subnetworks to increase the parallelism.
The latest official Java implementation of the API, named SSFNet,
is available at SSF Research Network (2004). The high-level flow
modeling used by SSF increases the performance of the simulator,
but decreases its accuracy in comparison to packet-level
simulators.

Yet Another Network Simulator is presented by Lacage and
Henderson (2006). This simulator derives from a project to
simulate MAC IEEE 802.11a/e in NS-2. Emulation is explored
through the definition of a packet model that allows serialization,
manipulation and fragmentation of packets in realistic fashion.

The simulation of distributed systems has different require-
ments and cannot be served well by low-level network simula-
tors. For example, distributed applications with thousands of
nodes are common in peer-to-peer systems. As network level
simulators incur a great computational cost, they limit the growth
of simulated scenarios to the scale found in real applications. This
led to a new class of simulation systems (Naicken et al., 2007).
According to Pujol-Ahulló et al. (2009), in this context, a simulator
also needs to be modular, customizable and extensible, avoiding
the restriction of scope of studied protocols due to implementa-
tion issues.

Neko (Urbán et al., 2002) is a distributed systems simulator
whose main characteristic is code portability between simulation
and the ‘‘real’’ environment. Authors claim that the set of methods
employed in each case are the same, and that the choice is provided
through an input file. Neko was developed in Java, achieving
portability at JVM level (Lindholm and Yellin, 1999). The develop-
ment of a protocol employing Neko’s API is done in layers. According
to this layered conception, the bottom layer will be connected to a
component called NekoProcess. This component will abstract the
communication between protocol layers under development and
the Network. Each NekoProcess provides the option of a passive

execution mode, whereby a callback method is employed to receive
and process messages, or active, mode in which a thread receives
messages and enqueues them. The Network is the communication
medium employed by NekoProcesses for message transmission and it
can be either simulated or real.

SimGrid (Legrand et al., 2003) is a simulator originally focused
on the investigation of scheduling techniques for modern dis-
tributed platforms. Such studies require experiments with many
environment variations, thus requiring a simulation tool with
small execution times. This led the development of SimGrid to be
focused in its execution speed. Fujiwara and Casanova (2007)
argue that the simplifications adopted by SimGrid lead to inaccu-
rate results in scenarios with small data sizes or networks with
high contention. To tackle the problem, the authors propose the
integration of SimGrid with GTNetS (Riley, 2003), a parallel
version of NS-2 that focus on reduction of event list size, memory
management, and reduction of the log file size. This integration

M.P. Barcellos et al. / Journal of Network and Computer Applications 35 (2012) 328–339330
allows SimGrid to work also as a packet-level simulator, increas-
ing its accuracy at the expense of performance.

PeerSim (Jelasity et al., 2009) is a simulator extensively used
for the evaluation of peer-to-peer overlay networks. It presents a
very modular architecture, allowing most of its components to be
extended and fully configured through a simulation configuration
file. As with other Java-based simulators, its engine is carefully
optimized to offer small memory footprint and good performance,
thus presenting good simulation scalability. PeerSim also presents
features to allow the easy definition and observation of network
topologies through graph abstractions, and the possibility to
augmented simulation realism with the use of trace-based data-
sets for phenomena such as churn.

Another simulator focused on peer-to-peer systems is Planet-
Sim (Pujol-Ahulló et al., 2009). Its architecture follows a layered
design with three levels. The upper layer implements the applica-
tion that will communicate using the P2P overlay. The middle
layer implements algorithms for initialization and maintenance of
a few typical overlay networks. The lower layer, on its turn,
allows the modeling of physical networks with different topolo-
gies, for evaluation of their impact in the simulated P2P applica-
tions. PlanetSim employs a set of behavior classes to control how
overlay nodes respond to different kinds of events. Behaviors are
special singleton classes activated when all attributes in a rule are
met by an event processed by a node. This model allows node
behavior to be modified without the necessity of modifications in
its source code.

Simmcast differs from previous work in several aspects.
Henderson et al. (2006), Nicol et al. (2003), Riley (2003), and
Fujiwara and Casanova (2007) aim at abstraction and scalability
meaning simulations with up to hundreds of thousands elements,
at the expense of the simulation accuracy and detail. Simmcast,
similarly to Pujol-Ahulló et al. (2009), focuses on extensibility,
flexibility and the power to have a rich implementation that
resembles the real implementation of the protocol. Simmcast is
developed in Java, a mature language capable of supporting high
performance applications (Taboada et al., 2009).

Simmcast also focuses on ease of simulation development. Its
architecture presents a set of building blocks that closely resem-
ble the components of a real network such as hosts, links and
routers. To create a simulation, the developer extends these
building blocks in order to implement the functionality of the
protocol to be evaluated. Such an architecture allows the devel-
oper to create a simulation as if he/she were in fact implementing
the protocol in a real network, easing the process of modeling the
simulation. At the same time, the API of the building blocks hides
from the developer issues related to simulation management, so
he can focus exclusively in the details related to the protocol he
wishes to simulate. The next section focuses on the description of
the Simmcast architecture, presenting in detail each of its build-
ing blocks.
3. Architecture overview

The entities of the simulation and the relationship among
them must be represented throughout the architecture in a
consistent way. The proposed architecture does so by defining a
framework where extensible building blocks are combined in
order to describe the simulated network environment, and on
top of it, the protocol under investigation.

The remainder of this section is organized as follows. An
overview of the framework structure is presented (Section 3.1),
followed by a description of the abstract building blocks and the
interactions between them (Section 3.2). Routing of packets
through a network topology is discussed in Section 3.3. Section
3.4 presents and explains the API, which includes primitives for
sending and receiving messages. Finally, other aspects relevant to
the architecture, such as the tracing interface and instantiation/
execution are also discussed (Sections 3.5 and 3.6, respectively).

3.1. Framework

The use of frameworks increases software reusability, which
can lead to advantages like reduced development effort and more
robust code through multiple reuse and refinement of the frame-
work (Schmidt and Buschmann, 2003). Besides, a framework is
also advantageous because the architecture is not intended to a
particular type of protocol or application, and thus derives an
abstract model that can be specialized according to the needs of
the user. Frameworks seem particularly appropriate for simula-
tion, since substantial part of the code can be reused between
simulation experiments. Indeed, frameworks have been employed
by other network simulation infrastructures, such as Jelasity et al.
(2009) and Pujol-Ahulló et al. (2009).

The use of an actual framework in Simmcast design allows the
simulator internals to be greatly simplified, since they are con-
structed defining what is called the framework’s core. It comprises
a simulation engine that provides processes and a kernel with
basic packet-level communication and group management. The
user, then, only needs to add or extend classes or interfaces of the
framework to implement the desired protocol, simplifying the
necessary effort to get the simulator ready to run.

3.2. Building blocks

Building blocks are the key to the modularity of the simula-
tion, as they serve two purposes. First, they are specialized by
providing additional code through inheritance, defining protocol
logic or other specific behavior. Also, through composition,
experiments are described as a combination of a set of building
blocks. We identified a set of basic elements needed to represent
a simulation, which led to the following building blocks: node,
thread, path, group, network, packet, and number stream. For each
building block, there is a corresponding class in Simmcast. Below,
the building blocks are presented.

Nodes are the fundamental interacting entities, and uniquely
identified. Their correspondence in the model is not dictated by
the simulator: depending on the desired level of abstraction,
nodes can represent a user agent, one end of a transport protocol
in a host, a router. A node has two halves, top and bottom,
containing user and Simmcast code, respectively.

In its top-half, a node will have one or more threads of
execution that implement the logic of the protocol to be simu-
lated (e.g., representing sender and receiver functionality). In
general, threads simplify a protocol because they allow the
developer to model a concurrent architecture using a set of
simpler entities that behave synchronously, even though this
bears a price on performance and scalability.

As shown in Fig. 1, which depicts two neighbor nodes, the
bottom-half of a node contains three queues: one to send out
packets, another to receive in packets, and a third to record
asynchronous events. An explanation about these queues follows.
Let the set of existing nodes in a simulation be represented by x1,
x2, . . .,xN, where N is the total number of nodes. A node xi will have
a sending queue sqi,j for any node xj that xi is connected to, and
also a single receiving queue rqi, to which all arriving packets will
be added (from any of the paths that arrive at xi). The capacity of
sq and rq can be explicitly set or left unlimited. The sqi,j queue is
served according to bandwidth to xj, while rqi is served according
rate in which reception operations are invoked. Sending a packet
means adding it to sq, an operation which takes tsend time; this

Table 1
Abstract vs. concrete views of network.

Building block Abstract network Concrete network

Node Processes, nodes Hosts, routers

Path End-to-end paths and network clouds Communication links

Group – Multicast groups

tqi timeout queue for events from node i

sqi,j queue for messages to be sent from node i to j

pqi,j queue for messages intransit from nodes i to j

rqj queue for messages to be received by node j

Fig. 1. Flow of messages between two nodes.

M.P. Barcellos et al. / Journal of Network and Computer Applications 35 (2012) 328–339 331
value can be used to limit the sending rate by the protocol. Taking a
packet from rq through a successful reception takes trecv time, and
this value can be used to limit packet receiving capacity. Finally, a
node xi will have a timer queue, represented as tqi, to record future
asynchronous events. There are many cases of asynchronous events
in protocol software, such as timeouts. Timers can also be used to
implement periodic processing behavior.

The classes that correspond to nodes and threads are hotspots

in the framework. Several methods offer points of extensibility,
being either abstract or empty. Since they are key factors during
the development of a simulation experiment, these building
blocks have a white-box characteristic, allowing even the most
basic primitives from Simmcast (see later) to be extended through
inheritance.

Nodes are connected by paths. Paths represent a packet flow
between two nodes, and thus their meaning in the model depends
on what the nodes themselves are representing. In other words,
the concept of node and path are dissociated from a physical
connotation. A node can represent a module or a layer in a
protocol graph, as much as it could represent a router or a user
agent. Paths are used to connect nodes, and could represent a
packet queue, a physical link or a logical path between two end-
nodes. A path from xi to xj is represented by a path queue, or pqi,j,
that holds packets in transit from xi to xj.

A path has three attributes: bandwidth, packet loss probability,
and propagation delay. The bandwidth (along with packet size) will
determine the service rate of the sending queue (also the admission
rate into pq, the path queue). The propagation delay will determine
the time a packet spends in pq. Loss probability is applied when the
packet arrives at the destination rq.

Now we take advantage of Fig. 1 to provide a simple example
of message transmission. First, node xi sends a message to xj; a
copy of the message is enqueued in sqi,j, space allowing. At this
point, the sending thread at xi is blocked for tsend time, if tsend40.
The message in sqi,j eventually comes to the head of the queue,
then waits for p=bi,j time, with p representing the packet size and
bi,j the bandwidth of the path from xi to xj. Afterwards, the
message leaves sqi,j and enters pqi,j. The message stays in pqi,j

for di,j time, where di,j is the latency delay of path from xi to xj.
Then, the packet is enqueued at rqj, space allowing; the message
eventually arrives at the head of rqj, and the next time a thread at
xj calls a receive operation, it will depart from rqj. The service time
is dictated by protocol logic, but can be no less than trecv.

All classes that implement paths are black-box. The pq queues
return their status to the user only through the trace mechanism,
for accounting purposes. Management and resolution of paths are
done at the kernel of the framework; user code cannot refer to
paths explicitly, as the transmission and reception primitives
make use of the nodes’ integer identifiers as the only means to
refer to them. The creation of paths itself is controlled: the class
that represents a node implements a Factory design pattern
(Gamma et al., 1995) for this end, interfaced through a command
in the simulation description file.

Groups are relevant for several distributed protocols. Simmcast
allows a group to be described either statically, through the
experiment description file, or dynamically, through join and
leave style primitives performed by the protocol nodes. These
operations are performed instantaneously. For example, if a node
xi is member of group g, and xi requests to leave g, from then on
any transmission to g will not deliver the packet to xi. However, if
a packet is sent to g, and during its ‘‘propagation’’ xi joins g, this
message will not be delivered to xi.

Packets (also called messages) are the unit of communication
between any two or more nodes. The Packet class contains the
minimal attributes required by a packet in Simmcast. Packets
are containers to arbitrary objects, allowing packet types for
new protocols to be easily defined either by inheritance or
composition.

Each parameter of a simulation model can be of fixed or
random nature. In Simmcast, they are read as number stream

objects. These are created according to user specified parameters
in order to generate a sequence of values. In the case of a fixed
parameter, the number stream will always return the same
configured value. Otherwise, in every access a new number will
be drawn from the pre-configured random distribution stream
(either uniform, normal, exponential, hyper-exponential, Erlang,
or user-defined). The characteristics of the random distribution
(such as mean, standard deviation or upper and lower bounds),
can be provided at stream creation time. This way random latency
values can be assigned to logical paths, mean processing times,
etc. A given number stream can be associated to an individual
parameter (e.g., end-to-end latency of a given path), or else can be
shared (e.g., to implement a global packet loss probability).
Number streams are important because they allow the user to
transparently replace fixed values by random ones in the simula-
tion model. This can be employed to study a simpler model, and
once understood, gradually add sources of non-determinism to it,
while assessing the impact of such changes.

Finally, there is the network, a set of nodes in the simulated
system that are combined and connected to form a topology. No
specific routing scheme is enforced, so that different kinds can be
used interchangeably (see next subsection for a discussion on
routing). In fact, by varying the meaning of a node and its queues,
simulations can cover a wide range of abstractions. In one
extreme, the simulation of a P2P overlay may be comprised of a
set of application processes connected through paths (reflecting
TCP connections). In the other, a protocol simulation can be
detailed to represent interactions among layers of network boxes
(such as hosts, routers, switches). We call these schemes abstract

and concrete, respectively, and a comparison between them is
provided in Table 1.

Simmcast makes it easy to switch from an abstract to a
concrete network models. In the simulation source code, it is
only necessary to switch the extension of the implemented nodes
from the Node to the HostNode abstract class (details about these

M.P. Barcellos et al. / Journal of Network and Computer Applications 35 (2012) 328–339332
classes will be presented later). Thereafter, it is only necessary to
alter the simulator configuration to include the desired router
topology for the network (more information in Section 4).

The abstract view of the network does not include routing,
only direct connections among nodes. So, essentially, a packet can
only be transmitted from xi to xj if a path connecting these two
nodes exists (that is, (pqi,j). Likewise, for xi to send a packet to a
given group g, it must be directly connected to each of the
elements xj of g ð8xjAg,(pqi,jÞ. A higher level of detail can be
easily obtained by making some of the nodes act like routers, by
means of a concrete view of the network. This is an important
design decision upon the simulation model, following the Loca-

lized Cost principle, choosing not to impose unnecessary complex-
ity/processing cost.

To each of the previous building blocks, there is one corre-
sponding class in the framework. Table 2 summarizes the build-
ing blocks and shows the corresponding class names.
3.3. Routing

When the abstract network view is employed, messages can be
transmitted only between direct neighbors. Therefore, there is no
need for routing. In contrast, when the concrete view is used, the
Table 2
List of building blocks and corresponding framework

classes.

Building block Class name

Node Node

Thread NodeThread

Path Path

Group Group

Number streams RandomStream and

subclasses

Packet or message Packet

Table 3
List of building blocks and corresponding classes specific of concrete view.

Building block Class name Observation

Host node HostNode Transport or application protocol

Router node RouterNode Routing level protocol

Path Path Specialized, fixed propagation latency

sqi queue for messages to be sent by node i

rqi,r queue for messages to be received from

pqr,j queue for messages in transit from route

rqj queue for messages to be received by no

pqi,r queue for messages in transit from node

sqr,j queue for messages to be sent from rout

Fig. 2. Message flow between two no
topology comprises hosts and routers which will be connected
arbitrarily. Thus, a message originated at a node may be destined
to another that is several hops away: such a message will cross a
set of routers, defined through a routing algorithm, ending in the
destination host. Below, we focus on concrete networks and
discuss routing issues.

With respect to routing, a simulator has the following require-
ments, which Simmcast aims to satisfy through its concrete
network view:
�

nod

r r t

de

i to

er r

des
routing independence, that is, the logic of protocols or systems
under investigation are unaffected by routing, allowing the use
of an incremental approach;

�
 clear separation between the layer under investigation and the

abstraction of the underlying layers;

�
 availability of arbitrary topologies, including rings, stars, trees,

buses, or any combinations of those;

�
 generation of traces in different levels of abstraction, allowing

the visualization of interactions among protocol or system
elements (for example, through abstract or concrete views of
the network).

Compared to the abstract view, the framework is changed in
two ways. First, the path building block is overloaded with link
behavior which, in practice, simplifies its behavior. Second, the
concept of a node is extended to introduce two new building
blocks: host node and router node, with corresponding subclasses.
A router node implements a routing algorithm in its top-half,
which will control message forwarding for its queues, maintained
in the bottom-half. A host node, instead, receives transport and/or
application code in its top-half. Table 3 summarizes the building
blocks used in the creation of a concrete network model.

To illustrate these components, we augment Fig. 1 by adding
the elements pertaining to the concrete network model. The
result, presented in Fig. 2, shows the interactions during a
message exchange between two nodes through a router. Accord-
ing to the properties previously pointed, the sending method of a
host node xi connected to a router xr sends every packet through
the sending queue sqi, regardless of the final destination. The
router extends the node by adding multiple receiving and sending
queues, one for each incoming or outgoing link. In Fig. 2 example,
the incoming link for xi is associated with the queue rqi,r , and the
outgoing link for node xj, with sqr,j. In the context of host nodes,
threads are used to represent the application/transport logic,
while in router nodes, the routing protocol.
e i by router r

o node j

j

router r

to node j

in a concrete network model.

M.P. Barcellos et al. / Journal of Network and Computer Applications 35 (2012) 328–339 333
Packets are forwarded by routers according to a routing table.
This table may be filled statically (in the beginning of the
simulation) or dynamically (through a routing protocol). These
two approaches will be discussed next.

Static routing may be employed in simulations where the
interactions among routers can be abstracted and routing infor-
mation will not change during simulation. In this model, a
universal routing table (including multicast information) is estab-
lished a priori. For multicast, the default scheme is SPT (Shortest

Path Tree), but this can be extended/changed as desired. The
convergence time is zero, since the table is static and any changes
to the topology are immediately reflected on it.

Although static routing is expected to be sufficient for most
environments, it is possible that a more detailed simulation of the
network layer will be desired. This may be so because the
transport/application logic will be substantially affected by rout-
ing or because the interest is on topology changes and how they
will reflect on the protocol under investigation. In such cases,
dynamic routing should be used, since it allows a more realistic
view of the network. To that end, a router node can be extended
into a dynamic router node, containing one or more threads,
which execute the routing algorithm. Each dynamic router node
contains its own routing table, and is responsible for maintaining
it consistently. This is achieved by means of control messages
exchanged among routers, according to the adopted protocol.
3.4. API

The simulation interface is defined as an API with typical
communication and timer operations, as well as concurrent soft-
ware architecture suitable for designing simulated group com-
munication protocols and applications. The primitives of the
simulator are no more intrusive in the designer’s code than actual
system calls would be. It is in fact often less intrusive, since
simulated code usually deals with a lesser number of exception
cases, and does not have to deal with synchronization among
threads in a node, since the discrete-time model implements
cooperative multithreading.

Simmcast offers a series of methods that define a concise set of
primitives, as listed in Table 4, through which the user will dictate
the interaction between building blocks. The idea is to have the
simulator primitives inserted into the user’s code, and not the
other way around.

Perhaps the most important primitives for a protocol are
sendðÞ and receiveðÞ. The former is non-blocking: the message is
enqueued for transmission, space allowing, but the calling thread
gets no feedback about the success of this operation. The receiveðÞ

primitive, on its turn, requests the receipt of a message and is
blocking: if no message is available in the receive queue, the
calling thread is blocked until one arrives or a specified timeout
expires. Primitives joinðÞ and leaveðÞ regard groups, and are
Table 4
List of primitives.

Name Action

sendðÞ Sends a packet/message to a given destination (does not block)

receiveðÞ Blocks until a packet is available (a timeout may be provided)

tryReceiveðÞ Attempts to receive a packet or returns ‘‘null’’ (non-blocking)

joinðÞ Node joins a given multicast group

leaveðÞ Node leaves a given multicast group

setTimerðÞ Configures timer to expire in a given time

cancelTimerðÞ Cancels an existing timer

onTimerðÞ Method to be invoked when a timer expires

sleepðÞ Put the current thread to sleep

wakeUpðÞ Wake up another thread that may be sleeping
implemented in the Group class, whose instances represent the
active groups in the network. The primitives setTimerðÞ, onTimerðÞ

and cancelTimerðÞ are used respectively to set a timer, to handle
an expired timer, and to cancel a pending timer. These allow the
developer to trigger as many events as necessary by its imple-
mentation, handling them by customizing the onTimerðÞ method
implementation. Finally, the primitives sleepðÞ and wakeUpðÞ are
related to scheduling, being used respectively to put the calling
thread to sleep (either indefinitely or for a specified time) and to
awaken another thread which is sleeping.

3.5. Simulation output and traces

Several different metrics are used in protocol simulation,
depending on three factors: the nature of the experiment, the
level of abstraction, and the kind of protocol evaluated. Some
examples of metrics are total required bandwidth, average time to
packet recovery at receiver nodes, number of ‘‘late’’ packets, total
number of packets exchanged, amount of dropped packets, and
time until all group members reach agreement on membership
after a failure of given group member. However, when applica-
tion-level protocols are being investigated, metrics are less
typical. Hence, flexibility is very important. Translated into the
Simmcast architecture, metrics can be generalized into different
forms of accounting a small group of event categories, which we
set apart as traceable events.

Traceable events are considered to be inclusion and/or removal
of an element to/from a queue (sq, pq, rq, and tq). For example,
according to Fig. 1, the following events will take place when a
packet is transmitted between two nodes (assuming it is not lost):
adding a packet to sq, moving the packet from sq to pq, moving
the packet from pq to rq, and removing the packet from rq.
Scheduling future asynchronous events is represented by enqueu-
ing objects to tq, which are removed either automatically,
representing timer expiration and subsequent event triggering,
or explicitly, representing timer cancellation.

Simmcast provides an unified output interface to where all
events in the simulation are reported through a special class. This
class, named TraceGenerator, has a read-only view of the entire
simulation scenario, and reports information that includes the
event time and basic information about every packet, as well as
the current internal state of all queues. Some of this information
is not available inside the simulation environment itself, in order
to maintain the consistency of the queue model. The tracing class
can be viewed as a protected sandbox where queue information
can be manipulated without possibly compromising the execu-
tion (as opposed to, say, inserting counters inside the simulator or
user code). Simmcast has a tracing subclass that generates native
traces using this interface. The user may also subclass
TraceGenerator in order to perform any desired custom account-
ing or output data in other formats.

3.6. Instantiation and execution

Unlike the conventional approach of using a simulator (or
building one from scratch), a simulation experiment with Simm-
cast is done in two stages, as follows. First, it is necessary to
instantiate the framework, constructing a new protocol by com-
bining existing building blocks and specializing the classes that
represent nodes. Depending on the protocol investigated, there
may be one or more kinds of agents, such as peer agents, replica
managers, sender, receiver, client, server, master, slave, and so on.

The second stage is to execute the resulting framework
instantiation in a given scenario. A scenario will be specified
through a set of different types of nodes and their connections,
thus forming the network topology. All these settings can be

M.P. Barcellos et al. / Journal of Network and Computer Applications 35 (2012) 328–339334
defined in a simulation description file, which is simply a text file
with a series of constructor and method calls. We decided to use
the class and method reflection features in favor of linking a
complete scripting language. Indeed, only a few commodities
such as macros and array notation are allowed. Other typical
programming language features such as looping constructs were
considered but discarded to avoid spreading the experiment logic
through different languages and environments. This way, besides
maintaining the simplicity of the system, a better ‘‘separation of
concerns’’ is guaranteed, constraining the use of the description
file to specifying the topology and startup parameters.
4. Implementation aspects

This section briefly discusses design and implementation
aspects from the instantiation of the architecture previously
overviewed. The latest implementation of Simmcast follows a
layered design with five levels, allowing a better separation of the
framework components, which also facilitates its manipulation
for creating simulations:

Layer 1: Implements the Simmcast engine, which is a generic
discrete-event machine based solely on the concept of
processes. This layer is not visible to the user.

Layer 2: This layer implements the kernel of the framework,
composed by fundamental classes described in Section
3.2 such as Node, NodeThread, and Path.

Layer 3: This layer implements the routing mechanisms neces-
sary for concrete network models, such as the HostNode

and RouterNode, and also necessary routing algorithms.
These entities are implemented through extension of
layer 2 elements, and also can be extended according to
the necessity of the user.

Layer 4: This layer encompasses the implementation of the
protocol that will be simulated through the framework.
It is composed by extensions of elements of layers 2 and
3 such as nodes and threads, augmented to implement
the intended protocol logic.

Layer 5: The final layer encompasses the parametrization of
simulation entities such as configuration of nodes and
network topology. It is specified through a text file
loaded in the simulation initialization.

The Engine implements the discrete-event machine responsi-
ble for thread scheduling in the framework. Because experiments
need to be reproducible, the scheduling is cooperative instead of
competitive. A single thread runs each time and is never pre-
empted. Internally, the Engine implements this model through
monitors, a synchronizing mechanism available in Java. In these
monitors, threads synchronize by cooperation through waitðÞ and
notifyðÞ of Object class, with one object per thread. A semaphore is
Ready

Joining

Sleeping

start ()

s

jend_join()

wake_up()

resume ()

Fig. 3. Process st
employed with each monitor, to guarantee that the corresponding
object is being blocked/unblocked once (Venners, 1999).

Processes, which are implemented through a thread, are the
main component of the engine. Their life-cycle follows the model
illustrated by Fig. 3. As shown, a process may be in one of five
different states: ready (to run), running, sleeping (blocked), join-
ing (waiting for another process), and ended (terminated). Each
state transition is associated with a method implemented in the
core process class.

The main structure associated with process scheduling by the
engine is the process queue. It contains all processes that are
scheduled to run in some time t, equals the current time or larger.
Abstractly, it is a priority queue with tuples which store time and
process, ðt,pÞ, ordered by t, the scheduling time. Processes with
the same t are ordered according to their ‘‘arrival’’. For example, if
a running process p causes a process q1 to be scheduled to run at
time t, and immediately after that a process q2 also to run at time
t, the priority queue will have first q1 and then q2. Each simulation
event will have one given process designated to handle it. Hence,
the process queue corresponds to the ‘‘time wheel’’ of the
simulator.

Internally, the process queue is implemented through a TreeMap

class, which is implemented (by the Java Virtual Machine) as a Red-
Black Tree as described by Cormen et al. (2001). There are two
operations defined for this queue. p:insertAtðtÞ inserts p in the
priority queue, with scheduling time t. removeFirstðÞ takes the
head of the queue, say r, which is the next process to be executed
by the Engine, and advances the simulation clock to the time t

associated with r if it is larger than the current time. The algorithms
of both methods are expected to have a complexity of Oðlog nÞ,
where n is the number of processes currently scheduled for
execution.
5. Performance evaluation

The implementation described in the previous section was
benchmarked to assess the individual costs in fundamental
Simmcast operations. Based on these costs, we were able to
establish lower bounds for processing time and memory con-
sumption. This section discusses the results of the benchmark and
other performance issues.

The performance of a simulation in Simmcast will be broadly
affected by the following aspects: (a) the complexity of the target
distributed algorithm or protocol under simulation; (b) system
size, that is, the number of nodes and threads in the simulation;
and (c) the overhead added by Simmcast.

The first aspect is independent of Simmcast and of any
simulator: if the distributed protocol under study is computa-
tionally- or message-intensive, then the results will take longer to
come out in the simulated one as they would in real life. Besides,
the richer in detail is the simulation model, the more expensive it
Running Ended)(ssecorp_dne

leep()

oin()

ate diagram.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0 200K 400K 600K 800K 1M

Ti
m

e
to

 a
dd

 n
ew

 e
ve

nt
 (µ

s)

Events stored in the threadpool

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1M 800K 600K 400K 200K 0

Ti
m

e
to

 re
m

ov
e

ev
en

t (
µs

)

Events stored in the threadpool

Fig. 4. TimeWheel methods performance measurement: (a) event insertion

(insertAt) and (b) event removal (removeFirst).

M.P. Barcellos et al. / Journal of Network and Computer Applications 35 (2012) 328–339 335
will be to run (but more accurate will be the results). The ability
to represent in Simmcast the protocol logic with different levels
of abstraction and detail helps mitigating this cost.

With respect to the second aspect, if all nodes are hosted
within the same machine hardware, then there is a natural slow-
down: the protocol logic of each node and every message
exchanged will be carried out within the same hardware. This is
inherent to sequential simulation and a limitation of Simmcast. It
was a design decision, though, to avoid complexity and keep the
framework small and simple.

The third aspect, overhead, is related to the simulator effi-
ciency and, hence, the focus of the analysis presented in this
section. The results shown below are based on experiments
executed in a computer with a Intel Core2 CPU running at
2.4 GHz and 8 GB of RAM.

5.1. Basic engine operations

To determine the most relevant operations executed by
Simmcast kernel during a simulation, we observed its methods
invocation frequency. The results showed, as expected, that the
dominant function performed by the kernel is the scheduling and
execution of simulation events created by processes. Such a
function is conducted through the methods insertAt and
removeFirst, implemented in the TimeWheel class.

Recall from Section 4 that the time wheel class maintains a
red-black tree containing all simulation events scheduled for
execution, indexed by their activation time. The method insertAt

is used to schedule a new event for execution. The costliest
operation in this method is the insertion of the event in the
red-black tree, which has complexity Oðlog nÞ. The method
removeFirst, in turn, is used to get the next event to be executed
by the simulator. The operation of highest complexity in this
method is the removal of the process indexed by the smallest key
from the tree, which is also Oðlog nÞ.

To further analyze the performance of the event scheduler, the
execution time of these two operations was measured while
scheduling and executing 1 million events. The results are shown
as scatter plots in Fig. 4, where the vertical axis represents the
execution time in microseconds ðmsÞ, and the horizontal axis, the
number of events already contained in the time wheel. Each
plotted dot represents the average time for 1000 executions of the
operation.

In both cases, the execution times follow the expected beha-
vior of Oðlog nÞ complexity. This can be clearly observed for the
insertAt in Fig. 4(a), where the execution time rapidly grows 1:2 ms
for the first 200,000 events, while the growth is of only 0:2 ms for
the last 200,000. In all cases, the average execution time of
insertAt always stays bellow the 4 ms. The method removeFirst

execution time, presented in Fig. 4(b), stays below 1:5 ms. It
presents a nearly constant execution time in the majority of
observed cases, but the Oðlog nÞ behavior can be observed in the
removal of the last 100,000 events, where the variation of the
execution time is of 0:2 ms.

5.2. Simulation performance

There are two simulation phases to consider: setup and
execution. The setup of a simulation will start with the parsing
of the configuration file, when the structures associated with the
topology will be created. That is, nodes and paths will be
instantiated, as well as associated threads. Once the topology
has been created, the configuration file will typically contain calls
made to public methods of topology objects, mainly nodes. All
instantiation and parametrization of the simulated system can
take place during the configuration file parsing.
In this phase, two operations are dominant: creation of nodes,
and creation of paths among them. To assess the general perfor-
mance of the simulation in its configuration step, we measured
the execution time to set up a simulation with 100,000 nodes and
100,000 paths between randomly chosen pairs of nodes. The
results are shown in Fig. 5, where the vertical axis represents
the measured time in microseconds ðmsÞ, and the horizontal axis
corresponds to the number of elements already created. Each dot
represents the average time for 100 executions of the instruction.

The results in Fig. 5 show that, on average, the execution time
remains constant regardless of the number of existing nodes and
paths. Figures 5(a) and (b) indicate, respectively, that the creation
of a node takes about 9 ms, and of a path, about 2 ms. Nodes are
managed in the simulation through various data structures,
which are manipulated when new nodes are created. Such
processing leads to the higher overhead observed in the creation
of the first 10,000 nodes. Data structures are also manipulated in
the creation of new paths, but since they are much simpler, no
considerable overhead can be observed.

Another metric of interest is memory consumption. In the
setup phase of a simulation, some classes are heavily instantiated,
with the creation of large numbers of objects. We analyzed a
dump of the Java VM heap obtained after the setup phase of a
simulation (that is, after the processing of the configuration file),
and identified nodes, threads and paths as the dominant classes.
Table 5 summarizes the memory overhead for each of these
classes, per element.

Table 5
Memory overhead of the dominant simulation

classes, per instance.

Class Memory (Bytes)

Node 136

NodeThread 240

Path 104

 10

 100

 1000

 10000

 10 100 1000

A
ve

ra
ge

 C
os

t b
y

M
es

sa
ge

 (µ
s)

Nodes in Topology

Chain Topology
Star Topology

Mesh Topology

Fig. 6. Simulation performance for three common topologies.

 0

 2

 4

 6

 8

 10

 12

0 20K 40K 60K 80K 100K

Ti
m

e
to

 c
re

at
e

a
ne

w
 n

od
e

(µ
s)

Nodes previously created

 0

 2

 4

 6

 8

 10

 12

0 20K 40K 60K 80K 100K

Ti
m

e
to

 c
re

at
e

a
ne

w
 p

at
h

(µ
s)

Paths previously created

Fig. 5. Simulation setup performance measurement: (a) node creation and

(b) path creation.

M.P. Barcellos et al. / Journal of Network and Computer Applications 35 (2012) 328–339336
The values presented in Table 5 for the Node and NodeThread

classes refer to bare classes, that is, there are no other structures or
logic implemented within them. When developing a simulation
with Simmcast, these classes will be extended to reflect the logic of
the protocol to be simulated, and thus consume more memory. The
topology of the simulated network is another factor to directly
influence the amount of memory, because there will be different
numbers of paths that must be instantiated for different topologies.

In the execution phase of the simulation, the dominant
operations are message transmission and reception. In the former
case, a message will be dispatched by the sender node and added
to the receiving queue of the destination node. In the latter, a
message can be removed from the receiving queue and returned
to the receiver node. A family of sending and receiving methods
are implemented in the Node abstract class.

To assess the performance of the methods and structures
involved in message processing, three test scenarios were eval-
uated. The first one involves two nodes, a source and a sink, which
will exchange a fixed number of messages. Source and sink are
connected through one router in a star topology, so that messages
will always cross only two hops. A variable number of dummy
nodes were connected to the router, so that we could measure
their influence in the message routing times.

The second scenario also consists of a source and a sink, but
now they are separated by a chain of interconnected routers. The
number of routers was varied with each new run. With larger
number of routers, we expect to see an increase in the simulation
times, due to the greater number of hops which the messages
need to traverse, and due to the overhead caused by the methods
that control routing tables at routers.

The third scenario consists of a mesh topology with a variable
number of nodes. In this scenario, two random nodes exchange a
fixed number of messages, while the others remain inactive. We
expect this scenario to show nearly constant results, since the
messages will always travel through one hop in the network. Another
difference in this scenario is that it is implemented with an abstract
network model, unlike the previous ones (which are concrete).

We executed the above-mentioned scenarios with topologies
between 10 and 1000 elements. In each execution, the source
node created 1000 messages and sent them to the sink node,
which just received and discarded the messages. Figure 6 shows,
in all scenarios, the average time cost for transmission of one
message. The horizontal axis represents the number of elements
in the topology, while the vertical axis represents the simulation
time in microseconds.

Figure 6 indicates that both star and mesh topologies have a near
constant time cost of 17 ms for the mesh topology and 28 ms for the
star topology, regardless of the number of nodes present in the
network. The mesh topology time cost is smaller because it is
implemented as an abstract network model, avoiding the overhead
related to routing algorithms present in the concrete network
model. Moreover, messages are sent through only one path in the
mesh topology, while they must be sent through two paths in the
star topology, increasing the overhead in the latter. The time cost for
the chain topology presents a constant behavior for small topologies,
with less than 20 nodes, with a time cost of 80 ms, presenting as
expected a linear growth for larger topologies, with an added
overhead of 1 ms for each router added to the network.
6. Framework instantiation

This section presents case studies in which Simmcast was
employed for the investigation of various application-layer pro-
tocols. Such studies include framework instantiations to evaluate

M.P. Barcellos et al. / Journal of Network and Computer Applications 35 (2012) 328–339 337
denial of service attacks against BitTorrent (Section 6.1), pollution
avoidance mechanisms in file sharing (Section 6.2), and a protocol
for secure service discovery in ubiquitous computing environ-
ments (Section 6.3). To further demonstrate its extensibility, we
present an integrated API that enables the execution of both
simulation and ‘‘live’’ experiments using the same piece of
protocol source code (Section 6.4).

These case studies provide only an overview of how Simmcast
can be used to evaluate different kinds of application-layer
protocols. The interested reader will find, in the following sub-
sections, references that describe in greater detail each of the
presented instantiations.

6.1. Investigating DoS attacks against BitTorrent networks

BitTorrent, Inc. (2010) is the most popular P2P file sharing
protocol in use today, with millions of users (Ipoque, 2010). Its
security, as well as with other peer-to-peer protocols, is an open
research challenge. The study by Konrath et al. (2007) presents an
evaluation of the impact of attacks that exploit BitTorrent
vulnerabilities with the sole intention of harming a swarm. It is
further extended by Barcellos et al. (2008a), with the proposal of
two countermeasures to effectively tackle three attacks. Both
studies were conducted using TorrentSim, an instantiation of
Simmcast to implement the logic of BitTorrent user agent and
tracker by extending the framework classes.

In BitTorrent, content is described by a torrent file, which includes
information about one or more trackers. A swarm is composed by a
group of peers interested in sharing some content and which connect
to each other forming a network with random topology. A tracker is
responsible for keeping an updated list of peers participating in the
swarm. TorrentSim adopts a concrete network model to represent a
swarm with its peers and trackers; both are created by extending the
HostNode class. These can be further specialized into honest or
malicious peers. Each peer contains multiple threads, one for each
remote peer connected. The overlay topology is arbitrarily formed
during the simulation, according to the connections established
among peers. Using a full mesh as underlying topology in this case
would be very inefficient, since very few connections would be in fact
ever used. Therefore, a star topology is used, with a RouterNode at the
center and HostNode instances neighboring it. Paths between
HostNode instances and the RouterNode are set with random delays
and no losses to reflect the abstraction provided by a TCP connection.
A comparison of simulation results and traces from a controlled
BitTorrent environment showed that the simulated swarm behavior
is very similar to that of real networks.

The success with TorrentSim led to the development of Torren-
tLab, a testbed to evaluate BitTorrent networks through simulations
and live experiments (Barcellos et al., 2008b). TorrentLab provides a
modeling environment which allows a scenario with a swarm to be
easily described. This scenario can be used as input to a simulation
and/or to a live experiment, to be performed, respectively, by
modules called TorrentSim and TorrentExp. The data they generate
is processed through a result consolidation environment responsible
for log analysis, consolidation and plotting. TorrentExp executes live
experiments through a weakly synchronized instantiation of BitTor-
rent user agents and a tracker over a computer network. The
instantiation and control of these entities is entirely managed by
TorrentExp. TorrentLab can also take advantage of parallel execution
through grid environments to accelerate the completion of Torrent-
Sim simulated scenarios.

6.2. Studying content pollution

Content pollution is one of the major threats to file sharing P2P
applications. Various research efforts aim to understand the
dynamics of this kind of threat and to propose means to identify
polluted content. The study by Barcellos et al. (2011) presents a
pollution control strategy with focus in the early stages of content
dissemination. The number of allowed downloads of a content is
adjusted according to a reputation metric, which is determined
according to user feedback.

Four pollution control mechanisms were proposed based on
the strategy, following classic distributed systems designs. Three
of these mechanisms depend on a download manager, which
receives feedback from peers that finished downloading a con-
tent, calculates reputation, and issues download grants. The
difference among the three approaches lies in the number and
organization of managers in the network topology. The fourth
mechanism is totally decentralized, and peers themselves decide
if they can begin downloading based on queries to other peers.

The four mechanisms were evaluated through an extension of
the framework. Nodes are extended to represent peers, either
correct or malicious ones, and the download manager. Each
mechanism was implemented by extending the base classes of
the strategy to incorporate the functionality specific to each
design. In the conducted study, we focused on the performance
evaluation of the mechanisms regardless of network topology.
The three strategies that depend on the download manager use a
concrete network model with a star topology, due to its simpli-
city. The topology was composed by a RouterNode at the center,
interconnecting instances of peers and download managers. The
decentralized strategy, on its turn, assumes a topology with no
specific organization, where each peer connects with a random
number of neighbors. As peers themselves are responsible to
propagate queries to their connections, the Simmcast routing
layer (as presented in Section 4) was not necessary. Thus, this
strategy uses an abstract network model, where each peer is
randomly connected to a small number of neighbors (a parameter
in the configuration file). Variables dependent on different prob-
abilistic distributions, like peer arrival and content download
times, were implemented straightforwardly through the
RandomStream classes provided by Simmcast.

6.3. Secure service discovery in ubiquitous computing

A service discovery protocol is an important element of an
ubiquitous computing environment. Such service should help
peers finding the available services in an environment, and at
the same time avoid the exposition of sensitive information that
could be used to launch attacks against clients. Flexible Secure
Service Discovery (FSSD), presented by Moschetta et al. (2010), is
a protocol that allow users to define the levels of security and
privacy when collaborating with the service discovery mechan-
ism. Peers employing the protocol use a trust network, built
according previous interactions among them. Messages are only
propagated to peers with a trust relationship higher than the
confidence levels specified in each message.

A Simmcast extension was developed to evaluate the protocol.
Each node implements the functionality of a device in a ubiqui-
tous environment, acting both as a provider, periodically announ-
cing a service in the network, and as a client, launching queries
for other services. The FSSD protocol is implemented as a library,
independently from the Simmcast API, to allow future deploy-
ment in real devices. To simulate FSSD, the library was integrated
to the protocol layer of the developed extension (see Section 4).
The configuration layer is used to set up the trust network among
nodes, through an algorithm that creates a topology with small
world properties, commonly found in such networks. The generated
topology is written to the configuration file loaded in the Simmcast
initialization. It should be noted that the trust network is a
component maintained internally by the FSSD protocol library,

M.P. Barcellos et al. / Journal of Network and Computer Applications 35 (2012) 328–339338
and thus its connections are independent of the underlying network
configuration. One of the goals of our evaluation was to study the
influence of the trust network topology on protocol performance,
without interference from the underlying communication network.
Thus, to keep it small and simple, a concrete network model with a
star topology used, with end-to-end connection properties (e.g.,
ordered delivery with random delays) being simulated through the
behavior of a configured Path.
6.4. Uniting simulation and live experiments

To achieve better insights in the analysis of complex network
systems, more than one evaluation method should be used.
Simulation and live experiments are two alternatives that can
be combined in many cases, but often do not appear together due
the implementation effort associated with each method. The
differences between simulation and prototype code usually lead
to these methods being used in different steps of the analysis.
Instead, simulation and experimentation could be part of the
same, integrated set, such that the researcher could seamlessly
alternate between them.

Simmcast Testbed (Barcellos et al., 2006) allows extensions of
Simmcast to be used also for the execution of live experiments in
a real network. It is an API for the Java language, comprehending
communication primitives and a thread model, allowing the
development of code to be used both for simulation and live
experimentation. The API abstracts peculiarities found on each
environment, and possesses two implementations: Testbed-Sim,
which uses as back-end the Simmcast framework; and Testbed-
Exp, which uses the Java thread and network APIs.

The Simmcast Testbed thread model follows the one adopted
by Java, and comprised two classes: ProgramThread, which
corresponds to a Java thread, having an interface very similar to
the later; and Program, corresponding to an independent instance
of a program, including the main method through which other
threads are initiated. The Testbed also implements communica-
tion primitives that are in an intermediary level of abstraction
between Simmcast and Java programming models. These primi-
tives include methods to send and receive messages, both
through unicast and multicast channels.

Testbed-Exp internally manages low-level network operations,
like socket openings and multicast group configuration. Network
addresses are also managed internally, abstracted to simple
integer identifiers through the NetworkAddress class. These
abstractions allow the Testbed API to keep a strong correspon-
dency with both the Java API programming model, as well as with
the model employed with Simmcast.

The execution model choice (simulated or real) happens at
runtime, by specifying in the experiment configuration which
package from simmcast:testbed should be loaded. This allows the
alternation between Testbed-Sim and Testbed-Exp without
recompilation. Apart from initialization, which requires small
adaptations to the main routine of the experiment, all protocol
code used in Testbed-Exp and Testbed-Sim is identical.
7. Design lessons and concluding remarks

This paper presented Simmcast, an extensible object-oriented
simulation framework for application-layer protocols. The flex-
ibility of Simmcast allows a simulation to be gradually developed
until it achieves close resemblance to a real protocol implemen-
tation. It also lets the researcher’s focus to be kept in questions
related to the studied protocol: while it abstracts the issues of
low-level network layers, present in more complex simulators, it
also provides the essential programming abstraction of nodes,
threads and messages.

Simmcast takes advantage of the reusability and generality
offered by framework concepts to ease the implementation of
diverse classes of protocols. The API contains building blocks that
closely resemble components of a real network, such as user
agents, hosts, routers and messages. Simulations can be created
by simply extending these components so they act according to
the protocol to be evaluated. Such an architecture allows the
developer to create a simulation as if he were in fact implement-
ing the protocol in a real network, facilitating the process of
modeling the simulation. The abstraction provided by the build-
ing blocks also hides lower level simulation control issues from
the protocol implementation. This allows the developer to keep
his attention in the more important task of modeling and
evaluating the application-layer protocol.

The framework architecture follows a layered design. Lower
levels, which contain the Java virtual machine and process
execution engine, are hidden from the user implemented proto-
col, located at the upper layers. Middle layers comprehend the
framework’s building blocks, the user’s implemented protocol,
and the routing topology for communication among nodes. The
upper layer comprehends the configuration of environment
parameters for one experiment, described through a text file of
simple syntax, allowing the evaluation of different parameter
configurations without the necessity of modifications in the
implementation of simulated entities.

Simmcast allows the creation of a model with incremental
level of detail. First versions of a simulation can be developed
through an abstract network model, where nodes represent
applications connected through an end-to-end communication
channel. This model can be gradually extended to a concrete
network model, which will allow the evaluation to be conducted
with routing in different topology configurations.

The extensibility offered by the framework was a key factor in
the development of simulations for the evaluation of various
kinds of application-layer protocols, some of them described in
Section 6. The layered architecture allows the development to
focus on the issues related to the protocol to be implemented,
leading to simulations with clean and extensible design. Further
analysis (presented by Konrath et al., 2007) demonstrated that a
simulation developed through Simmcast present a behavior very
close to that found on an experiment in a controlled environment.
This leads to simulations that offer a great deal of insight about
evaluated protocols, without necessity to deploy complex experi-
mental environments.
Acknowledgments

This work has been partly supported by Brazilian research
funding agency CNPq – Conselho Nacional de Desenvolvimento
CientÃ fico e Tecnológico, under the CT-Info Project Grant no.
552178/2002-0. Part of this research was conducted while the
first author was with Unisinos University, Brazil (2001–2007).

References

Bajaj S, Breslau L, Estrin D, Fall K, Floyd S, Haldar P, et al. Improving Simulation for
Network Research. Technical Report. USC Computer Science Department;
1999.

Barcellos MP, Bauermann D, Sant’anna H, Lehmann M, Mansilha R. Protecting
bittorrent: design and evaluation of effective countermeasures against dos
attacks. In: SRDS’08, 27th International Symposium on Reliable Distributed
Systems, Napoli; 2008. p. 73–82.

Barcellos MP, Facchini G, Muhammad HH, Bedin GB, Luft P. Bridging the gap
between simulation and experimental evaluation in computer networks.
In: 39th Annual Simulation Symposium, Huntsville; 2006. p. 1–8.

M.P. Barcellos et al. / Journal of Network and Computer Applications 35 (2012) 328–339 339
Barcellos MP, Gaspary LP, Cordeiro WLdC, Antunes RS. A conservative strategy to
protect P2P file sharing systems from pollution attacks. Concurrency and
Computation Practice & Experience 2011;23:117–41.

Barcellos MP, Mansilha RB, Brasileiro FV. Torrentlab: investigating bittorrent
through simulation and live experiments. In: ISCC’08, IEEE Symposium on
Computers and Communications, Marrakech; 2008. p. 507–512.

BitTorrent, Inc., BitTorrent. /http://www.bittorrent.comS; 2010.
Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. 2nd ed.

MIT Press; 2001.
Cowie J, Nicol DM, Ogielski AT. Modeling the global internet. Computing in Science

& Engineering 1999;1:42–50.
Fujiwara K, Casanova H. Speed and accuracy of network simulation in the SimGrid

framework. In: ValueTools’07, 2nd international conference on performance
evaluation methodologies and tools, Nantes; 2007. p. 1–10.

Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Professional; 1995.

Henderson TR, Roy S, Floyd S, Riley GF. NS-3 project goals. In: WNS2’06, 2006
workshop on NS-2: the IP network simulator, Pisa; 2006.

Ipoque. Internet study 2008/2009. /http://www.ipoque.com/resources/internet-
studies/internet-study-2008_2009S; 2010.

Jelasity M, Montresor A, Jesi GP, Voulgaris S. Peersim: A peer-to-peer simulator.
/http://peersim.sourceforge.net/S; 2009.

Konrath MA, Barcellos MP, Mansilha RB. Attacking a swarm with a band
of liars: evaluating the impact of attacks on bittorrent. In: P2P’07, 7th
IEEE international conference on peer-to-peer computing, Galway; 2007.
p. 37–44.

Lacage M, Henderson TR. Yet another network simulator. In: WNS2’06, 2006
workshop on NS-2: the IP network simulator, Pisa; 2006. p. 650–7.

Legrand A, Marchal L, Casanova H. Scheduling distributed applications: the
SimGrid simulation framework. In: CCGrid’03, 3rd IEEE/ACM international
symposium on cluster computing and the grid, Tokyo; 2003. p. 138–45.

Lindholm T, Yellin F. The Java(TM) virtual machine specification. 2nd ed. Prentice
Hall PTR; 1999.
Moschetta E, Antunes RS, Barcellos MP. Flexible and secure service discovery in
ubiquitous computing. Journal of Network and Computer Applications
2010;33:128–40.

Muhammad HH, Barcellos MP. Simulation group communication protocols
through an object-oriented framework. In: ANSS’02, 35th annual simulation
symposium, San Diego; 2002. p. 143–50.

Naicken S, Livingston B, Basu A, Rodhetbhai S, Wakeman I, Chalmers D. The state
of peer-to-peer simulators and simulations. ACM SIGCOMM Computer Com-
munication Review 2007;37:95–8.

Nicol DM, Liu J, Liljenstam M, Yan G. Simulation of large scale networks 1:
simulation of large-scale networks using SSF. In: WSC’03, 35th winter
simulation conference, New Orleans; 2003. p. 650–7.

NS-2 Developers. The network simulator NS-2. /http://www.isi.edu/nsnam/ns/S;
2009.

NS-3 Developers. The NS-3 network simulator. /http://www.nsnam.orgS.
Nygaard K, Dahl OJ. The development of the SIMULA languages. In: History of

programming languages, vol. 1. New York: ACM; 1978. p. 39–480.
Pujol-Ahulló J, Garcı́a-López P, S�anchez-Artigas M, Arrufat-Arias M. An extensible

simulation tool for overlay networks and services. In: SAC’09, 2009 ACM
symposium on applied computing, Honolulu; 2009. p. 2072–6.

Riley GF. Simulation of large scale networks 2: large-scale network simulations
with GTNetS. In: WSC’03, 35th winter simulation conference, New Orleans;
2003. p. 676–4.

Schmidt DC, Buschmann F. Patterns, frameworks, and middleware: their syner-
gistic relationships. In: ICSE’03, 25th international conference on software
engineering, Portland; 2003. p. 694–704.

SSF Research Network. SSF website. /http://www.ssfnet.orgS; 2004.
Taboada GL, Tourino J, Doallo R. Java for high performance computing: assessment

of current research and practice. In: PPPJ’09, 7th international conference on
principles and practice of programming in Java, Alberta; 2009. p. 30–9.

Urbán P, Défago X, Schiper A. Neko: a single environment to simulate and
prototype distributed algorithms. Journal of Information Science and Engi-
neering 2002;18:981–97.

Venners B. Inside the Java 2 virtual machine. 2nd ed. McGraw-Hill; 1999.

http://www.bittorrent.com
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009
http://peersim.sourceforge.net/
http://www.isi.edu/nsnam/ns/
http://www.nsnam.org
http://www.ssfnet.org

	Beyond network simulators: Fostering novel distributed applications and protocols through extendible design
	Introduction
	Related work
	Architecture overview
	Framework
	Building blocks
	Routing
	API
	Simulation output and traces
	Instantiation and execution

	Implementation aspects
	Performance evaluation
	Basic engine operations
	Simulation performance

	Framework instantiation
	Investigating DoS attacks against BitTorrent networks
	Studying content pollution
	Secure service discovery in ubiquitous computing
	Uniting simulation and live experiments

	Design lessons and concluding remarks
	Acknowledgments
	References

