
Generalized Models of Network Architectures for Online Games

GUILHERME B. BEDIN

HISHAM H. MUHAMMAD

ANDRÉ DETSCH

MARINHO P. BARCELLOS

PIPCA - Programa Interdisciplinar de Pós-graduação em Computação Aplicada

Centro de Ciências Exatas e Tecnológicas
UNISINOS - Universidade do Vale do Rio do Sinos

{bedin,hisham,detsch, marinho}@exatas.unisinos.br

Abstract
Online games are network applications in which multiple players interact with
each other (typically in real time) using computers or similar devices. The way
computers are connected and application processes communicate impact on the
application performance as well as network resources consumption. The effects
of online gaming to the Internet traffic, and vice-versa, have only recently begun
to be addressed in the literature.
This paper reviews existing interactive, online games. Based on their
fundamental attributes, namely architecture and communication design
decisions, it identifies generalized online game models. We envision their
application in performance evaluation of current Internet games, the prediction
of traffic they may generate in larger scenarios. We believe this will be the
underlying model to research new, more scalable architectures for future Internet
online games.

Keywords: online games, multicast.
__

Anais do X SIBGRAPI, outubro de 1997

1 Introduction
Online games are becoming one of the most
important kinds of distributed application, and
a main source of Internet traffic.

This paper addresses relevant communica-
tion aspects of online games, and as a result
identifies generalized online game models
based on their fundamental properties. All
models are devised using the same set of key
parameters, so that they can be compared
under the same terms. Here we consider only
games where participants interact with each
other in real time during a single game session
(e.g., first-person shooters, flight simulators,
etc.)

2 Architecture
An online game can be described by its global
state, that is, the current values assumed by
game objects. At each player, the user display
is updated many times per second, according to
its local view of the global state. The global
state is typically kept centralized at a single
point or fully decentralized among players.
Thus, online games can be generally classified
according to their architecture in centralized or
decentralized.

It is well-known that centralized, cli-
ent/server architectures are poorly scalable; all
messages need to go from clients to the server,
be consolidated and then sent back to clients
([3]). Also, the processing performed at the
server might become a bottleneck, as the
number of players increases. Although com-
bined network and processing delays might
exceed the maximum “acceptable” values, the
client/server is the predominant model in online
gaming.

Games with fully decentralized
architectures are also known as peer-to-peer or
serverless: global state and decisions are
shared among all participating computers. All
nodes are equal: each one keeps a part of the
the game global state and is responsible for a
set of objects. Objects are distributed, but not
necessarily replicated (objects like maps may
be replicated, whereas there might be a single
copy of each player-related objects). The game
must use a synchronization mechanism to
prevent consistency problems, like conflicting
actions.

To prevent the above consistency
problems, all events in all agents should be, at
least ideally, globally ordered according to their

wall-clock time. The real-time nature of
interactive games, allied with current network
technology, prevents decentralized games to
employ a sophisticated event ordering
mechanism. A solution involves a simpler
distributed synchronization mechanism, such as
the bucket synchronization scheme (see [4] for
details) or specialized GPS hardware in each
computer, so that clocks are synchronized with
UTC global time with an accuracy of hundreds
of nanoseconds.

So, the greatest advantage of the
centralized architecture lies on its simplicity: all
game events are inherently serialized by the
server, allowing the game to easily order
remote events in time (a single clock time
exists, the server’s). However, the centralized
architecture has long-known disadvantages
too: there is a single point of failure, and a
potential performance bottleneck at the server.
In a decentralized architecture, the game logic
and session control is distributed among all
players in a way that permits a game to
continue for some of the players if
communication or node failures occur.

According to the design decision taken in
regards to its architecture, online games will
make use of one of two forms of multi-point
communication. Multi-point can be achieved
with multiple-unicast transmissions, though it
scales poorly. Because of its simplicity and
deployability, approaches based on multiple
unicasts have been commonly used in online
games. Broadcast allows a sender to efficiently
transmit a single copy of each message to all
nodes, but restricted to the same local-area
network. IP multicast brings the benefits of
broadcast without the cost of sending to all.

It is generally inefficient to fully replicate
each game state entity in all players: players
that are distant in a virtual world and cannot
interact in any ways may have no interest in
keeping copies of such game objects.
Therefore, in a game with a large number of
participants, a state update may not need to be
propagated to all other players; a given player
will be interested in receiving only certain data.
The implications for client/server architectures
is that the server will not need to send the same
status update to all players; for decentralized
architectures, each player will need to send (or
to receive, depending on the viewpoint) only a
subset of state updates (a set of data flows.)

GENERALIZED MODELS OF NETWORK ARCHITECTURES FOR ONLINE GAMES

3 Generalized Models
This section combines the attributes above
defined, namely architecture and communica-
tion, to define four generalized models of online
games: UC (multi-unicast, centralized); UD
(multi-unicast, decentralized); MC (multicast,
centralized); and MD (multicast, decentralized.)

Figure 1 illustrates the models, which are
discussed below. The centralized models, UC
and MC, rely on a game server (denoted as GS)
to order events, control game session, etc. In
contrast, the decentralized models, namely UD
and MD, are serverless, being the game logic
distributed among all game players (GPs.)

In all models, there exists an application-
level game engine that runs at every participant
host and is responsible for interacting with
users. The game engine displays to the user the
local, current view of the global game state,
periodically refreshing the console. In the
centralized models, each player sends updates
via unicast to all other players. The server, on

its turn, periodically “consolidates” updates
received from each player into a global state,
and sends the result to all players, either via
multiple unicast or multicast. In contrast, the
decentralized models employ no server: each
player directly sends and receives local state
to/from all other players. Periodically, each
player takes all local states received recently

from other players and consolidates it into its
view of the global state.

The proposed online game models are of
periodic nature: all the processing performed by
players and servers is done in periodic fashion.
There are four time periods, which are: p1, the
period a GP sends out game state, either to a
GS or to other GPs; p2, the period a GP updates
its local view of the global state; and for
centralized models only, p3, the period the GS
consolidates game state received from GPs; p4,
the period a GS sends out consolidated state to
GPs.

The four time periods are illustrated in
Figure 2, which shows the state change
dissemination from GP1 to GP2, for
decentralized and centralized models (Figures 2
(a) and (b), respectively). In the decentralized
case, (i) every p1, GP1 sends an update; (ii)
every p2, GP2 processes a new local view of the
global state. In the centralized case, (i) every p1,
GP1 sends an update to GS; (ii) every p3 the GS
consolidates a new global state from received
messages; (iii) every p4, the GS will send
updates to GPs; (iv) every p2, GP2 updates its
local view of the global state, based on data
received from the server.

The values of p1 and p4 represent sending
periods (thus rates) of messages with updates.
The shorter they are, the quicker the updates of
a player tend to reach other players, but also the
larger the bandwidth taken/required. In

contrast, both p2 and p3 represent updating
periods, for player and server, respectively.
Their values affect the rate in which updates are
communicated: a shorter p2 will result in
updates being processed and delivered more
frequently to the user’s display, at a higher
processing cost; a shorter p3 will allow the
server to process more often collected state
update requests received in messages. The new

Figure 1: Four online game models.

(a) centralized (b) decentralized

Figure 2: State change dissemination from GP1 to GP2

GENERALIZED MODELS OF NETWORK ARCHITECTURES FOR ONLINE GAMES

global state computed by the server is useless
unless it can be transmitted to players;
therefore, p3 ≥ p4. If p3 = p4, the server always
computes new global state and then sends it to
players; otherwise the server sends multiple
times the same message, to add reliability
through redundancy (“saturation”).

4 Related Work on Online Games
One of the first online games to appear was
Amaze ([1]), in the mid 80’s. However, the first
widely-popular games with network support
came a decade later, usually following the MD
model: combining a decentralized architecture
(peer-to-peer) with link-level broadcast (usually
IPX), limiting games to local area networks.

As online games migrated to the Internet,
their networking systems moved towards a
client/ server architecture based on UDP/IP (in
our taxonomy, the UC model). In first-person
action games (FPS), command latencies above
150ms are noticeable enough to the user to the
point of affecting the interactive experience.

On the other hand, one may identify a
different class of multiplayer games with very
distinct network requirements. Strategy games
(RTS) can cope with much higher latencies (up
to 500ms [2]). Taking advantage of this, Age of
Empires, for instance, uses a decentralized
communication scheme built on top of UDP
(following the UD model.)

While a promising alternative in terms of
scalability for multiplayer games, multicast is
still used only in the research field. MiMaze is a
decentralized multicast-based game, thus fitting
the MD model ([4]). It is novel in that it
exploits IP Multicast to allow multiparty games
to be played in the Internet.

IP multicast allows the efficient delivery of
copies of the same information to a large set of
receivers. However, this efficiency is limited by
preference heterogeneity: when receivers range
in their preferences for application data, the
sender has to transmit all information to all
receivers, so that most receivers will receive
some useless information. This may be the case
of certain online games. Related work on the
scalability of distributed, interactive applications
focuses on grouping, clustering or relevance

filtering strategies. These are schemes that aim
at reducing the amount of unwanted
information that each receiver (in our case,
player) will be delivered. To apply such
grouping approaches with the current IP
multicast architecture constitutes a challenge,
since groups are subject to large setup overhead
and long setup latency, including a long
addressing procedure ([5]).

5 Concluding Remarks
This paper presented generalized models of
communication architectures used in online
games. As shown, these models, although
abstract, reflect schemes used in existing online
games. The main purpose of this modeling is to
describe protocols and algorithms on a common
ground, so they can be compared in
performance evaluation studies.

These models can later be specialized in
order to depict more precisely characteristics of
a given category of online games. As future
work, these models are being employed in
simulations of multicast patterns for online
games.

6 References
1. Eric Berglund, and David Cheriton, AMAZE: A

Distributed Multi-player Game Program Using the
Distributed V Kernel, IEEE Software, v.2, pp.248-
253, May 1985.

2. Paul Bettner & Mark Terrano, 1500 Archers on 28.8:
network Programming in Age of Empires and
Beyond, In Proc. of Game Developer's Conference
(GDC2001), San Jose, 20-24 March 2001.

3. Yahn Bernier, Latency Compensating Methods in
Client/Server In-game Protocol Design and
Optimization, In Proc. of Game Developer's
Conference (GDC2001), San Jose, 20-24 March
2001.

4. Laurent Gautier, C. Diot, Design and Evaluation of
MiMaze: a Multi-Player Game on the Internet, In
Proc. of IEEE Multimedia Systems Conf., Austin,
June 28 - July 1st, 1998.

5. Brian Neil Levine, Jon Crowcroft, Christophe Diot,
J. J. Garcia-Luna-Aceves, James F. Kurose,
Consideration of Receiver Interest for IP Multicast
Delivery, In Proc. of IEEE INFOCOM 2000, Tel-
Aviv, 26-30 March 2000.

	1 Introduction
	2 Architecture
	3 Generalized Models
	4 Related Work on Online Games
	5 Concluding Remarks
	6 References

