
AN ALTERNATIVE FOR THE UNIX D IRECTORY STRUCTURE�

Hisham Muhammad André Detsch

Programa de Pós-Graduação em Computação Aplicada - PIPCA
Centro de Ciências Exatas e Tecnológicas

UNISINOS - Universidade do Vale do Rio dos Sinos
São Leopoldo - RS - Brasil

{hisham,detsch}@exatas.unisinos.br

Abstract. This work presents the directory hierarchy used in the GoboLinux distribution, a new model of
directory tree forUNIX -based operating systems. This alternative approach provides a greater functional organi-
zation, designed to improve the management of software installed from source code compilation. It does that by
making the structure of installed applications explicit inthe directory tree.

1 Introduction

The UNIX operating system was first used on environments where users accessed a central application server
through terminal stations with low (or no) storage capacity. A number of characteristics of this system, most
notably the data organization structured as a directory tree, reflect this history. The storage model based on trees
proves to be adequate to this day; however, the logic behind the UNIX directory hierarchy is based on assumptions
that no longer correspond to the reality of most of the existing Linux installations. The Linux operating system
is getting widely used on personal stations which execute and store the user’s applications. In this context, there
is no “application server”, and still, conventions such as the existence of different repositories for libraries persist
(/lib, /usr/lib and/usr/local/lib).

Because of the fast pace of development in the Free Software community (“release early, release often”[3]),
the process of installing and removing programs became common and frequent. This is very different from the
scenario on which the criteria for the UNIX directory hierarchy (still used by the Linux distributions) were based
upon. As these criteria do not take into account the needs of today’s reality, it becomes interesting to reevaluate
them and seek an alternative.

This paper presents a directory tree that was conceived fromthe needs and usage patterns of modern Linux
systems and, still, manages to retain compatibility with the UNIX legacy. Initially, aspects of the classic hierarchy
are discussed (Section 2). Next, an overview of the approaches employed in directory trees of other systems is
presented (Section 3). Section 4 describes the devised hierarchy, while Section 5 reports experiences related to the
use of this model. Finally, Section 6 concludes the paper.

2 Characteristics of the current hierarchy
In the UNIX tree, directories serve two purposes: differentiate categories of files and differentiate their location
in the network. Files of the “executable” category from all applications are stored in six directories:/bin,
/usr/bin,/usr/local/bin,/sbin,/usr/sbin and/usr/local/sbin1, where the criteria of choice
to determine which of those six directories is used for a given file is basically its physical location (local or remote).

�This is a translated and slightly revised version of the paper presented at the III International Forum on Free Software,Porto Alegre, Brazil,
2002.

1files from the X Window System are, historically, an exception to this rule, possessing an entire UNIX-like hierarchy under/usr/X11R6

Still, some programs are installed in other locations than those dictated by the above rules. For instance, the File
System Hierarchy standard has an arbitrary list of which executable files should be stored at the/bin directory.

Some programs assume that certain files are stored in specificlocations (for example,/lib/cpp,/usr/bin/python).
This is a source of incompatibilities, even between different Linux distributions that follow the traditional model
of directories. But the biggest problem caused by this approach is the difficulty in the removal of programs, since
files of different applications are mixed in the same directories and different files from a single application are
spread throughout a number of directories.

The solution used by companies and organizations that develop Linux distributions in order to maintain a
correspondence between individual files and applications is “package managing”, that is, installing and removing
software using a program that maintains a database that relates existing files in the system to the applications from
which they were originated. The main limitation of this method is the fact that installation of applications from
source code generates inconsistencies in the database.

A common practice is to keep the/usr hierarchy maintained by the package manager and target the instal-
lation of programs compiled locally to/usr/local. This keeps the database consistent, but does not solve the
issue on how to remove programs installed from source.

The UNIX hierarchy standard defined an extra directory,/opt, to allow groups of applications to be installed
separately from the rest. This can be considered an acknowledgment of the existence of the problems enumerated
above. Further, this causes a conflict of criteria in the standard itself.

3 Alternative approaches

Practically all operating systems developed after the creation of UNIX use the model of directory trees. The
different organizations applied to the directory hierarchy of those systems reflect the changes both in the way how
computers are used and in their storage capacity. Below, we describe the directory trees existing in Mac OS X and
AtheOS, desktop operating systems that possess a certain degree of UNIX heritage.

The adoption of a kernel and tools based, respectively, on Mach 3.0 and FreeBSD brought to Apple Computer
the challenge to combine the UNIX hierarchy with a look and feel familiar to Mac OS users. Mac OS X ([1])
uses an uncommon strategy to achieve this feat. In its graphical interface, a Macintosh directory tree is presented,
containing directories such as/System/Library and/Network/Remote_Station. Actually, these di-
rectories are a subset of the real directory tree. Also, the interface displays some directories in locations other
than their physical storage points. For instance,/Mac OS X is a link to the root directory, and some directories,
such as/Applications, appear in the interface as/Mac OS X/Applications. Accessing the file system
through a text-based shell, “hidden” UNIX directories suchas/usr and/etc become accessible. Note that this
approach is only possible in a proprietary environment, where the entire user interface of the system is developed
by a single company. In a system like Linux this would be impossible, given the heterogeneity of graphical user
interfaces available.

The directory hierarchy of the AtheOS operating system ([5]) is partially based on the UNIX tree. In AtheOS,
for example, the/usr directory is used for the intents that, in UNIX,/opt is used. This is made feasible through
the^ directory convention. The AtheOS libraries recognize thisas the “directory where the currently running
executable file resides”, analogously as~, the UNIX indicator to the user’s home directory. Unfortunately, Linux
being a UNIX clone, it cannot employ solutions as this one, since this causes considerable portability problems (a
text-based Linux application can be easily ported to AtheOS, but the opposite is not true).

There are programs that try to present alternatives to provide, to some degree, a reorganization of the directory
hierarchy. Two of the most used programs of this kind areGNU Stow([4]) and Encap([2]). Both follow the
basic idea presented by theDepotsoftware ([7]), developed at Carnegie Mellon. The principle is to maintain two
directory trees: a “real” one, where the files are sorted by application; and another one, sorted in the traditional way,
containing links to the files located at the first tree2. GNU Stow intends to be a simplified alternative to Depot, since,
contrary to Depot, it does not maintain a database. When using Stow, the application should be compiled with paths
relative to/usr/local and installed with paths relative to/usr/local/stow/application. Encap uses

2The AtheOS operating system uses a similar technique to maintain compatibility with UNIX applications

/ Root directory
|--Programs Programs
|--Mount Mounting point for additional local or remote filesystems
|--Users Personal areas for users
|--System
| |--Boot Files necessary for booting (kernelandbootloader)
| |--Links
| | |--Executables Links to files from the programs’bin andsbin directories
| | |--Headers Links to files from the programs’include directories
| | |--Libraries Links to files from the programs’lib directories
| | \--Manuals
| | |--info Links to files from the programs’info directories
| | \--man{1-9} Links to files from the programs’man/man{1-9} directories
| |--Settings Configuration files and links to files fromSettings directories
| \--Variable Variable data
| \--Temp Temporary files
|--proc Kernel status files (managed by theproc file system)
\--dev Device files (managed by thedev file system)

Figure 1: The GoboLinux directory hierarchy

similar systematics, with a rudimentary support for version control (the package manager software,epkg, tries to
detect versions through the name of the application createdunder/usr/local/encap, for example,sed-2.0
andsed-3.0.2).

4 The GoboLinux hierarchy
The basic idea behind the GoboLinux hierarchy is to combine ideas from the previously presented operating
systems and the link system introduced by Depot, creating a new hierarchy that maintains total compatibility
with the UNIX tree. Like in Depot, each program (Gimp, Fileutils, Glibc, Qt, etc.) is installed in its entirety
inside a separate directory. Inside this directory, standard UNIX directories are typically created, containing files
that in the traditional UNIX directory tree would be copied to /usr/bin (or /bin), /usr/sbin (or /sbin),
/usr/lib (or/lib), and so on.

For this purpose, a/Programs directory was estabilished, containing a subdirectory foreach installed pro-
gram. Each of those subdirectories has, on its turn, a subdirectory for each version of the specific program, and
a link labeledCurrent pointing to the currently used version. Each program also has aSettings directory
storing the program’s configuration files (which would be normally stored at/etc). Notice that this directory is
unique for all versions of the program. This design choice eases the version control, since the personal configura-
tions are preserved in the event of an upgrade or downgrade.

Installation of programs from source is made through scripts. In the case of programs with configuration
files generated usingGNU autoconf(which is the majority of free software packages) the scriptuses the--
prefix parameter to define the destination of the files being installed. For example, when installing theQt library,
version 2.3.2, the commandconfigure --prefix=/Programs/Qt/2.3.3 is automatically executed, and
the required directories are created. For programs that do not provide this parameter in their configuration files,
theconfigurescript (or theMakefilesthemselves) will be adjusted, automatically, through scripts that attempt to
replace the paths contained in the file; or, in a few cases, manually.

Once a new version of a program is installed, links are created from each file in the application at directories
that centralize those links according to file types. For example,/System/Links/Executables stores links
for executable files of all programs (contained in thebin andsbin directories). This way, all executables can be
called or accessed from a single directory (same happening to th libraries, headers and manuals / info files). This
approach is different from the ones used by the symbolic linkmanagement systems discussed on Section 3, as the
generated links structure does not reflect the UNIX hierarchy, but a functional categorization of the links.

Figure 1 describes in greater detail the general directory hierarchy as proposed. An important treat of this
structure is the nonexistence of a globalshare directory (programs can have their ownshare directories).
This decision is explained by the fact that, even though theshare directory permits sharing of data between

different applications, in practice this directory servesa repository for application-specific files that has no place
on the UNIX hierarchy (such as icons and fonts). This way, we opted not to have a/System/Links/Shared
directory, because the differentshare directories of each application have no relation between them.

Compatibility with the UNIX legacy is obtained through creation of extra links not present in the above di-
agram, such as/etc -> /System/Settings, /bin -> /System/Links/Executables and/lib
-> /System/Links/Libraries, mirroring the GoboLinux tree into the UNIX tree. Unlike previous pro-
posals that attempted to organize the directory tree maintaining historical compatibility, in GoboLinux there is a
single point for installation of programs, without a legacytree in parallel.

5 Experience

Practical experience with the directory structure presented in this paper can be divided in two parts. Firstly, the
project was started off with a package based distribution which was gradually converted to the GoboLinux tree as
the programs were updated to new versions. In this stage, structural ideas evolved and their validity and viability
were verified.

In a second stage, we opted to compile the entire system following the GoboLinux hierarchy, intending to have
total control of all files installed in the machine. We used asa basis the documentation created by the “Linux from
Scratch” project ([6]).

6 Concluding remarks

As presented in Section 3, the search for alternatives to reorganize the UNIX directory tree is a subject of several
projects. This paper presented a new proposition for the UNIX directory structure, differing from previously
existing projects mainly because there is no legacy tree coexisting with the main tree, allowing for a greater self-
consistency and elegance. Practical experience showed thetotal viability and compatibility of the presented ideas,
as well as making evident the benefits brought by this new structure.

Further information about GoboLinux can be obtained athttp://www.gobolinux.org.

References

[1] Apple Computer Inc.,“Inside Mac OS X - System Overview”, ISBN: 1400524806, 292p., Fev. 2001.

[2] “Encap Archive”, Computing and Communications Services Office at the University of Illinois at Urbana-Champaign,
http://www.encap.org, 2002.

[3] Eric Raymond,“The Cathedral & The Bazaar”, O’Reilly and Associates, hardback edition, Jan. 2001.

[4] Guillaume Morin, Bob Glickstein,“GNU Stow”, http://www.gnu.org/software/stow/stow.html, 2001.

[5] Kurt Skauen,“AtheOS”, http://www.atheos.cx, 2002.

[6] Gerard Beekmans, “Linux From Scratch”, http://www.linuxfromscratch.org/, acessado em 17/03/2002

[7] Wallace Colyer, Walter Wong,“Depot: A Tool for Managing Software Environments”, Usenix LISA VI Conference, 1992.

