AN ALTERNATIVE FORTHE UNIX DIRECTORY STRUCTURE"

Hisham Muhammad André Detsch

Programa de Pos-Graduacdo em Computacao Aplicada - PIPCA
Centro de Ciéncias Exatas e Tecnologicas
UNISINOS - Universidade do Vale do Rio dos Sinos
Séo Leopoldo - RS - Brasil

{hisham,detsch}@exatas.unisinos.br

Abstract. This work presents the directory hierarchy used in the Gamnot distribution, a new model of
directory tree foruNix-based operating systems. This alternative approachges\d greater functional organi-
zation, designed to improve the management of softwaraliedtfrom source code compilation. It does that by
making the structure of installed applications explicithe directory tree.

1 Introduction

The UNIX operating system was first used on environments &vhsers accessed a central application server
through terminal stations with low (or no) storage capaclynumber of characteristics of this system, most
notably the data organization structured as a directopy teflect this history. The storage model based on trees
proves to be adequate to this day; however, the logic behatINIX directory hierarchy is based on assumptions
that no longer correspond to the reality of most of the exgstiinux installations. The Linux operating system
is getting widely used on personal stations which executiestore the user’s applications. In this context, there
is no “application server”, and still, conventions suchfes existence of different repositories for libraries psrsi
(/lib,/usr/liband/usr/local/lib).

Because of the fast pace of developmentin the Free Softwanencinity (“release early, release often[3]),
the process of installing and removing programs became amand frequent. This is very different from the
scenario on which the criteria for the UNIX directory hierlay (still used by the Linux distributions) were based
upon. As these criteria do not take into account the needsdafyts reality, it becomes interesting to reevaluate
them and seek an alternative.

This paper presents a directory tree that was conceived tihenmeeds and usage patterns of modern Linux
systems and, still, manages to retain compatibility withtiNIX legacy. Initially, aspects of the classic hierarchy
are discussed (Section 2). Next, an overview of the appesemployed in directory trees of other systems is
presented (Section 3). Section 4 describes the deviseattingt while Section 5 reports experiences related to the
use of this model. Finally, Section 6 concludes the paper.

2 Characteristics of the current hierarchy

In the UNIX tree, directories serve two purposes: diffeiaetcategories of files and differentiate their location
in the network. Files of the “executable” category from glphications are stored in six directoriesbi n,
/usr/bin,/usr/local/bin,/sbin,/usr/sbinand/ usr/local/sbin where the criteria of choice
to determine which of those six directories is used for amfile is basically its physical location (local or remote).

*This is a translated and slightly revised version of the papesented at the Il International Forum on Free Softwaoegto Alegre, Brazil,
2002.
Lfiles from the X Window System are, historically, an exceptio this rule, possessing an entire UNIX-like hierarchyemidisr / X11R6

Still, some programs are installed in other locations tierse dictated by the above rules. For instance, the File
System Hierarchy standard has an arbitrary list of whickcetable files should be stored at thiei n directory.

Some programs assume that certain files are stored in specé#ttons (for examplé,l i b/ cpp,/ usr/ bi n/ pyt hon).
This is a source of incompatibilities, even between diffiélanux distributions that follow the traditional model
of directories. But the biggest problem caused by this aggrds the difficulty in the removal of programs, since
files of different applications are mixed in the same dirgetoand different files from a single application are
spread throughout a number of directories.

The solution used by companies and organizations that ae\ughux distributions in order to maintain a
correspondence between individual files and applicati®fpgsickage managing, that is, installing and removing
software using a program that maintains a database thédsedaisting files in the system to the applications from
which they were originated. The main limitation of this madhs the fact that installation of applications from
source code generates inconsistencies in the database.

A common practice is to keep tlleusr hierarchy maintained by the package manager and targetsted-i
lation of programs compiled locally tousr / | ocal . This keeps the database consistent, but does not solve the
issue on how to remove programs installed from source.

The UNIX hierarchy standard defined an extra directbppt , to allow groups of applications to be installed
separately from the rest. This can be considered an ackdgwlent of the existence of the problems enumerated
above. Further, this causes a conflict of criteria in thedstathitself.

3 Alternative approaches

Practically all operating systems developed after thetineaf UNIX use the model of directory trees. The
different organizations applied to the directory hiergrohthose systems reflect the changes both in the way how
computers are used and in their storage capacity. Belowgserithe the directory trees existing in Mac OS X and
AtheOS, desktop operating systems that possess a certaigedsf UNIX heritage.

The adoption of a kernel and tools based, respectively, och\z0 and FreeBSD brought to Apple Computer
the challenge to combine the UNIX hierarchy with a look anel familiar to Mac OS users. Mac OS X ([1])
uses an uncommon strategy to achieve this feat. In its grapinterface, a Macintosh directory tree is presented,
containing directories such aSyst eni Li br ary and/ Net wor k/ Renot e_St at i on. Actually, these di-
rectories are a subset of the real directory tree. Also, texface displays some directories in locations other
than their physical storage points. For instariddac OS Xis a link to the root directory, and some directories,
such ag Appl i cat i ons, appear in the interface a3hac OS X/ Appl i cat i ons. Accessing the file system
through a text-based shell, “hidden” UNIX directories saslh usr and/ et ¢ become accessible. Note that this
approach is only possible in a proprietary environment,relilee entire user interface of the system is developed
by a single company. In a system like Linux this would be ingilole, given the heterogeneity of graphical user
interfaces available.

The directory hierarchy of the AtheOS operating system {fSpartially based on the UNIX tree. In AtheOS,
for example, thé usr directory is used for the intents that, in UNIXopt is used. This is made feasible through
the” directory convention. The AtheOS libraries recognize tigsthe “directory where the currently running
executable file resides”, analogously-aghe UNIX indicator to the user’s home directory. Unfortteig, Linux
being a UNIX clone, it cannot employ solutions as this ormegeithis causes considerable portability problems (a
text-based Linux application can be easily ported to Athd@the opposite is not true).

There are programs that try to present alternatives to geptd some degree, a reorganization of the directory
hierarchy. Two of the most used programs of this kind @MU Stow([4]) and Encap([2]). Both follow the
basic idea presented by tBepotsoftware ([7]), developed at Carnegie Mellon. The pringiiglto maintain two
directory trees: a “real” one, where the files are sorted Ipjiegtion; and another one, sorted in the traditional way,
containing links to the files located at the first fie&NU Stow intends to be a simplified alternative to Depotsijn
contrary to Depot, it does not maintain a database. Wheg @tiow, the application should be compiled with paths
relative to/ usr/ | ocal and installed with paths relative tausr /| ocal / st ow/ appl i cati on. Encap uses

2The AtheOS operating system uses a similar technique totaraicompatibility with UNIX applications

Root directory

/

| -- Prograns Programs

| - - Mount Mounting point for additional local or remote filesystems

| --Users Personal areas for users

| --System

| | - - Boot Files necessary for bootingdrnel and bootloade)

| | - - Li nks

| | | - - Execut abl es Links to files from the programdi n andsbi n directories

| | | - - Headers Links to files from the programd’ncl ude directories

| | |--Libraries Links to files from the programd’i b directories

| | \--Manual s

| | |--info Links to files from the programs’ nf o directories

| | \--man{1- 9} Links to files from the programstan/ man{ 1- 9} directories
| | --Settings Configuration files and links to files froi8et t i ngs directories
| \--Variable Variable data

| \--Tenp Temporary files

| --proc Kernel status files (managed by theoc file system

\ - -dev Device files (managed by théev file systein

Figure 1: The GoboLinux directory hierarchy

similar systematics, with a rudimentary support for vansiontrol (the package manager softwarekg tries to
detect versions through the name of the application creatddr/ usr/ | ocal / encap, for examplesed- 2. 0
andsed- 3. 0. 2).

4 The GoboL inux hierarchy

The basic idea behind the GoboLinux hierarchy is to combileas from the previously presented operating
systems and the link system introduced by Depot, creatingva lierarchy that maintains total compatibility
with the UNIX tree. Like in Depot, each prograrGifmp, Fileutils, Glibc, Qt, etc.) is installed in its entirety
inside a separate directory. Inside this directory, stechtddNIX directories are typically created, containing files
that in the traditional UNIX directory tree would be copied tusr / bi n (or/ bi n),/ usr/ sbi n (or/ sbi n),
fusr/lib(or/lib),andsoon.

For this purpose, &Pr ogr ans directory was estabilished, containing a subdirectoryefaeh installed pro-
gram. Each of those subdirectories has, on its turn, a sedidily for each version of the specific program, and
a link labeledCur r ent pointing to the currently used version. Each program alsodfet t i ngs directory
storing the program’s configuration files (which would bemally stored af et ¢). Notice that this directory is
unique for all versions of the program. This design choiceedhe version control, since the personal configura-
tions are preserved in the event of an upgrade or downgrade.

Installation of programs from source is made through serigh the case of programs with configuration
files generated usinGNU autoconf(which is the majority of free software packages) the scuiges the -
pr ef i x parameter to define the destination of the files being irstafror example, when installing tilibrary,
version 2.3.2, the commarmanf i gure - - prefi x=/ Prograns/ Q/ 2. 3. 3is automatically executed, and
the required directories are created. For programs thabtlpnovide this parameter in their configuration files,
the configurescript (or theMakefilesthemselves) will be adjusted, automatically, throughmsrthat attempt to
replace the paths contained in the file; or, in a few casesuaign

Once a new version of a program is installed, links are cdefaten each file in the application at directories
that centralize those links according to file types. For gxam Syst ent Li nks/ Execut abl es stores links
for executable files of all programs (contained in then andsbi n directories). This way, all executables can be
called or accessed from a single directory (same happeaitiglioraries, headers and manuals / info files). This
approach is different from the ones used by the symbolicrirakagement systems discussed on Section 3, as the
generated links structure does not reflect the UNIX hiemgrght a functional categorization of the links.

Figure 1 describes in greater detail the general direct@salchy as proposed. An important treat of this
structure is the nonexistence of a glolsdlar e directory (programs can have their owtar e directories).
This decision is explained by the fact that, even thoughsthar e directory permits sharing of data between

different applications, in practice this directory seraaepository for application-specific files that has no place
on the UNIX hierarchy (such as icons and fonts). This way, ped not to have ASyst enf Li nks/ Shar ed
directory, because the differesihar e directories of each application have no relation betweemth

Compatibility with the UNIX legacy is obtained through ctiea of extra links not present in the above di-
agram, such asetc -> / System Settings,/bin -> /SysteniLi nks/ Execut abl esand/lib
-> [Syst em Li nks/ Li brari es, mirroring the GoboLinux tree into the UNIX tree. Unlike preus pro-
posals that attempted to organize the directory tree ninintphistorical compatibility, in GoboLinux there is a
single point for installation of programs, without a legaae in parallel.

5 Experience

Practical experience with the directory structure pressimt this paper can be divided in two parts. Firstly, the
project was started off with a package based distributioithvivas gradually converted to the GoboLinux tree as
the programs were updated to new versions. In this stageststal ideas evolved and their validity and viability
were verified.

In a second stage, we opted to compile the entire systenwiiolipthe GoboLinux hierarchy, intending to have
total control of all files installed in the machine. We use@éssis the documentation created by the “Linux from
Scratch” project ([6]).

6 Concluding remarks

As presented in Section 3, the search for alternatives tgamize the UNIX directory tree is a subject of several
projects. This paper presented a new proposition for theXUtlltectory structure, differing from previously
existing projects mainly because there is no legacy treristirgg with the main tree, allowing for a greater self-
consistency and elegance. Practical experience showeot#h&iability and compatibility of the presented ideas,
as well as making evident the benefits brought by this nevestre.

Further information about GoboLinux can be obtainebtatp: / / www. gobol i nux. or g.

References

[1] Apple Computer Inc.Inside Mac OS X - System OvervieW'SBN: 1400524806, 292p., Fev. 2001.

[2] “Encap Archive”, Computing and Communications Services Office at the Usitieof lllinois at Urbana-Champaign,
http://ww. encap. or g, 2002.

[3] Eric Raymond;The Cathedral & The Bazaar; O’Reilly and Associates, hardback edition, Jan. 2001.

[4] Guillaume Morin, Bob Glickstein;GNU Stow”, ht t p: / / www. gnu. or g/ sof t war e/ st ow’ st ow. ht mi , 2001.
[5] KurtSkauen;AtheOS”, htt p: // ww. at heos. cx, 2002.

[6] Gerard BeekmansLinux From Scratch”, htt p: // www. | i nuxfronscr at ch. or g/ , acessado em 17/03/2002
[7] Wallace Colyer, Walter WongDepot: A Tool for Managing Software EnvironmentgJsenix LISA VI Conference, 1992.

